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Abstract
Distributed on-line transaction processing (OLTP) database management systems (DBMSs)
are a critical part of the operation of large enterprises. These systems often serve time-varying
workloads due to daily, weekly or seasonal fluctuations in load, or because of rapid growth
in demand due to a company’s business success. In addition, many OLTP workloads are
heavily skewed to “hot” tuples or ranges of tuples. For example, the majority of NYSE
volume involves only 40 stocks. To manage such fluctuations, many companies currently
provision database servers for peak demand. This approach is wasteful and not resilient
to extreme skew or large workload spikes. To be both efficient and resilient, a distributed
OLTP DBMS must be elastic; that is, it must be able to expand and contract its cluster of
servers as demand fluctuates, and dynamically balance load as hot tuples vary over time.

This thesis presents two elastic OLTP DBMSs, called E-Store and P-Store, which
demonstrate the benefits of elasticity for distributed OLTP DBMSs on different types of
workloads. E-Store automatically scales the database cluster in response to demand spikes,
periodic events, and gradual changes in an application’s workload, but it is particularly
well-suited for managing hot spots. In contrast to traditional single-tier hash and range par-
titioning strategies, E-Store manages hot spots through a two-tier data placement strategy:
cold data is distributed in large chunks, while smaller ranges of hot tuples are assigned ex-
plicitly to individual nodes. P-Store is an elastic OLTP DBMS that is designed for a subset
of OLTP applications in which load varies predictably. For these applications, P-Store per-
forms better than reactive systems like E-Store, because P-Store uses predictive modeling
to reconfigure the system in advance of predicted load changes.

The experimental evaluation shows the efficacy of the two systems under variations in
load across a cluster of machines. Compared to single-tier approaches, E-Store improves
throughput by up to 130% while reducing latency by 80%. On a predictable workload,
P-Store outperforms a purely reactive system by causing 72% fewer latency violations, and
achieves performance comparable to static allocation for peak demand while using 50%
fewer servers.

Thesis Supervisor: Michael R. Stonebraker
Title: Adjunct Professor of Computer Science
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Chapter 1

Introduction

Due to the proliferation of public cloud offerings like Amazon AWS, Microsoft Azure and

Google Cloud, today’s web developers can build applications that easily scale to millions of

concurrent users with the click of a button. For example, startups such as Airbnb, Duolingo,

and Lyft have all used Amazon’s AWS offerings to manage their rapid growth [3]. Accord-

ingly, internet users have come to expect rich functionality with lightning-fast response

times, even when millions of other users are trying to access the same content.

A key piece of technology enabling this scalability and fueling the productivity of web

developers is the modern, distributed database management system (DBMS). DBMSs gen-

erally constitute the “back-end” of these web applications, and are responsible for storing

the data associated with the users and content of the site. For example, the items in your

online retail shopping cart, your bank account balance, and your airline reservations are all

likely stored in a DBMS. These examples are representative of a class of applications com-

monly known as on-line transaction processing (OLTP) applications, because they largely

interact with the DBMS through many real-time, small transactions [42]. Transactions

are operations on the DBMS that read and/or modify the data, such as adding an item to a

shopping cart, viewing a bank account balance, or making a flight reservation. The value of

performing these operations as transactions in an OLTP DBMS is that the database provides

certain correctness guarantees, freeing the developer to focus on other things like building

new features. These guarantees are known by the acronym ACID: Atomicity, Consistency,

Isolation, and Durability [79, 42].
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Atomicity: This refers to the all-or-nothing nature of transactions. For example, if

Alice sends a wire transfer of $100 to Bob, the transaction must (1) deduct $100 from

Alice’s bank account and (2) add $100 to Bob’s account. Both actions must succeed, or

else the entire transfer should fail.

Consistency: This guarantee ensures that data is never corrupted, and any declared

constraints always hold. For example, if a column in a table is declared to be unique (e.g.,

an employee ID), it will not be possible to insert two records with the same value for that

column.

Isolation: This means that two concurrently running transactions will not interfere

with each other, even if they access the same data. It must appear as if the two transactions

completed serially even if their operations were interleaved. This is one of the reasons that

read-only transactions are also considered transactions; read-only transactions must not see

data from a concurrently-running update transaction that has been only partially completed.

Durability: This ensures that once data has been inserted in a database and success-

fully committed, no crashes, hardware failures or other disasters will cause it to be erased

unintentionally.

The ACID properties are essential for many applications, and developers have tra-

ditionally relied on the DBMS to provide these guarantees. However, many traditional

SQL-based OLTP DBMSs do not easily scale to the required levels needed to serve mod-

ern web applications, and therefore cannot meet the throughput and latency requirements

of these applications. Maximizing throughput (rate of transaction execution) while keep-

ing latency (delay per transaction) below a given threshold is critical to the success of

most OLTP applications, since these performance metrics are directly related to the vol-

ume of users that can be served and the response time of the application. As a result,

NoSQL DBMSs such as MongoDB [18], Cassandra [57] and Amazon’s DynamoDB [25]

have gained in popularity due to their impressive scalability and simplicity. But NoSQL

systems do not provide all of the ACID guarantees, leaving application developers to build

this functionality into applications themselves. Building ACID functionality on-the-fly is a

difficult and error-prone process, making NoSQL systems often more trouble than they are

worth for such applications.
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For applications not willing to compromise on consistency guarantees, there are several

other techniques that researchers and companies have begun to use to achieve scalability [9,

101, 74]. For example, due to the large amount of RAM available in modern servers, it

is now possible to store most of the data in an OLTP database in main memory, allowing

modern DBMSs to remove much of the overhead of older disk-based systems [44]. Logical

logging, single-threaded execution, and latch-free data structures are other techniques that

have improved the performance of several modern OLTP DBMSs [48, 26, 97].

In order to achieve even higher levels of scalability, many new DBMSs are making use

of older ideas that have new relevance in the age of cloud computing. For example, many

new systems employ a shared nothing architecture [88], in which data is distributed across

a cluster of machines (also called servers or nodes) which do not share either memory or

disk. Often the data is partitioned (also known as sharded), meaning subsets of the tuples

(records) in the database are assigned to specific servers, and no single server contains all

the data. Because servers do not share data, if a transaction requires access to a specific set

of tuples (e.g., to read or update the data), it must be executed on the server(s) containing

those tuples. To make it easy to route transactions to the correct server, a hash function

is typically used to map tuples to servers. It is also possible to perform this mapping at

a finer granularity, e.g. with a lookup table mapping individual tuples or key ranges to

servers [93]. The advantage of the shared nothing partitioned model is that if a transaction

only needs to access data on a single server, no communication is required with any other

servers. This allows many transactions to be executed in parallel if they touch different

data, and is the key feature enabling scalability. For workloads in which transactions are

uniformly distributed across the database and each transaction touches a small amount of

data, shared nothing partitioned systems can scale almost linearly (i.e., capacity increases

linearly with cluster size).

One downside of many modern distributed DBMSs is that they are difficult to use in

practice, because changing the configuration of the database to scale out and add servers

is often a manual process. Furthermore, many OLTP applications are subject to workloads

that vary considerably over time, requiring frequent reconfiguration of the database. Some

NoSQL systems such as Amazon’s DynamoDB allow “auto-scaling”, but DynamoDB only
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works for applications that do not require the flexibility and guarantees of SQL, and is “ide-

ally suited for request patterns that are uniform, predictable, with sustained high and low

throughput usage that lasts for several minutes to hours” [4]. Clearly, DynamoDB will not

be a good solution for OLTP applications that are subject to highly variable and spiky traffic

patterns. This extreme variability is especially prevalent in web-based services, which han-

dle large numbers of requests whose volume may depend on factors such as the weather or

social media trends. For example, an e-commerce site might become overwhelmed during

a holiday sale. Moreover, specific items within the database can suddenly become popular,

such as when a review of a book on a TV show generates a deluge of orders in on-line

bookstores. This phenomenon in which a small number of items receive a disproportion-

ately large number of the transactions is known as skew. As such, it is important that a

DBMS be resilient to both load spikes and skew.

This thesis focuses on making DBMSs resilient to such variability using several tech-

niques collectively known as database elasticity. An ideal elastic database adapts to changes

in an application’s workload without manual intervention to ensure that application through-

put and latency requirements are met, while continuing to preserve transactional ACID

guarantees. It is this last part that makes this problem particularly challenging. NoSQL

systems are able to scale a DBMS cluster easily because they do not support full SQL

transactions. Eliminating manual intervention is also essential to ensure that the system

can react immediately to a change in the workload; if the DBMS has to wait for a human

to perform corrective actions, the event that caused the problem may have passed.

The techniques discussed in this thesis enable an OLTP DBMS to monitor its workload,

and automatically add (or remove) servers as soon as it determines that additional capacity

is needed (or no longer needed) to meet throughput and latency requirements. If a workload

follows a predictable pattern, the system can detect this pattern and scale out proactively to

achieve even better performance. Besides adding or removing servers to adapt to changes

in the aggregate workload, the elasticity techniques discussed balance the workload across

servers to adapt to fine-grained changes in access patterns. This load balancing is achieved

by changing the way data is partitioned across servers (i.e. changing the partitioning hash

function and moving data accordingly) in order to ensure that every server in the database
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can be highly utilized for transaction processing.

At first glance, some of these techniques may seem unnecessary to all but the largest

companies, since many of today’s OLTP applications can be served by highly memory-

optimized single-node DBMSs [26, 97]. But as more and more companies move to the

cloud and make use of Software-as-a-Service (SaaS) offerings (e.g., Salesforce [104]), dis-

tributed DBMSs will be essential to a larger fraction of applications. Furthermore, as the

global internet traffic continues to rise [32] and transactions are increasingly generated by

sensors and algorithms [10], the need for databases that can handle extremely high through-

put will only increase. Database elasticity will be an important tool to manage this growth

and ensure that distributed databases are as efficient as possible.

The remainder of this chapter examines the industry-standard approach for managing

workload variability, and describes in detail how database elasticity is a better solution.

Next it introduces the research contributions, and presents the two systems built as part of

this thesis. These systems implement several novel elasticity techniques and demonstrate

their effectiveness on real and synthetic workloads. The chapter concludes by summarizing

the contributions of the research and outlining the rest of the thesis.

1.1 The Status Quo

To date, the way that administrators deal with fluctuations in demand on an OLTP DBMS

is primarily a manual process. Too often it is a struggle to increase capacity and remove

system bottlenecks faster than the DBMS load increases [33]. This is especially true for

applications that require strong transaction guarantees without service interruptions. To

manage the risk of unanticipated load fluctuations, companies frequently provision com-

puting resources for some multiple of their routine load, since the peak demand may range

from 2–10× the average [7]. This leaves resources underutilized for a substantial fraction

of the time.

Given this pervasive underutilization, there is a desire in many enterprises to con-

solidate OLTP applications onto a smaller collection of powerful servers, whether using

a public cloud platform or an internal cloud. This multi-tenancy promises to decrease
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over-provisioning for OLTP applications and introduce economies of scale such as shared

personnel (e.g., system administrators). But unless the demand for these co-located appli-

cations is uncorrelated, the net effect of multi-tenancy might still allow severe fluctuations

in load.

A more robust solution is to enable DBMSs to adapt to workload variation by adding

resources dynamically. But most companies do not dynamically provision computing re-

sources for database systems, even though dynamic provisioning is often used for state-

less web services [49]. OLTP databases are difficult to reconfigure because it is nec-

essary to copy data between servers in a transactionally-consistent manner while keep-

ing the database live and able to accept new requests. Insert-heavy workloads such as

Internet-of-Things (IoT) and streaming applications may be able to send new data to new

servers without moving existing data, but most other workloads will require some amount

of data to be moved in order to handle increased accesses to existing data. Depending

on the amount of data that must be migrated, reconfiguration can take anywhere from a

few seconds to ten minutes or more [28]. During this reconfiguration period, the system

may experience degraded performance in the form of higher transaction latency or a higher

transaction abort rate.

Despite the challenges inherent in reconfiguring OLTP DBMSs, companies are starting

to pursue dynamic provisioning because the status quo is no longer acceptable. As a case

study, let us examine the Brazilian company B2W Digital (B2W) [11], which has been

a key collaborator in this research. B2W is the largest online retailer in South America,

sometimes referred to as “The Amazon of South America”. They own four major brands

including Americanas.com, Shoptime.com, Submarino.com and SouBarato.com. Amer-

icanas is the largest of the four websites and, similar to Amazon, sells everything from

books to clothes to household appliances. B2W is motivated to participate in this research

because they have a heavy and extremely variable OLTP workload. Load on their databases

at peak times can be more than 10x the load at other times. On Black Friday, the day after

Thanksgiving in the United States, the load is so much higher than normal that B2W ac-

tually reconfigures the database clusters to use more powerful servers several days before

the event. This scale-up process requires significant manual effort and weeks to months of
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planning. B2W realizes that there are many other opportunities to save money by limiting

computing resources throughout the year, but the manual effort is too great. A system that

automatically reconfigures itself without human intervention has the potential to save them

a significant amount of money, especially as their company grows and requires ever-larger

database clusters.

Researchers have suggested some ideas for automatic OLTP database repartitioning for

load balancing purposes [82, 95, 31], but most of these solutions do not handle cases with

extreme skew, and many do not support elasticity at all. Google’s Spanner is at the cutting

edge of industrial solutions since it enables automatic load balancing by “resharding” with

fine-grained partitioning key ranges, but Google’s recent conference paper does not provide

details of the load balancing algorithm or monitoring infrastructure [12]. In the public cloud

offering of Spanner, the decision to add or remove nodes is manual; there is no auto-scale

option [40].

1.2 Database Elasticity

Pervasive overprovisioning is a waste of resources, and might not be sufficient to ensure

good performance if load exceeds capacity due to an excessively large spike. Furthermore,

overprovisioning does little to prevent performance issues caused by hot spots. Database

elasticity is challenging but necessary because OLTP applications can incur several types

of workload variability and skew that each require different solutions. Examples of these

include:

Hot Spots: In many OLTP applications, the rate that transactions access certain indi-

vidual tuples or small key ranges within a table is often “skewed”. For example, 40–60%

of the volume on the New York Stock Exchange (NYSE) occurs on just 40 out of ∼4000

stocks [72]. This phenomenon also appears in online retail stores, where some items are

much more popular than others. For example, an estimated 55 million copies of the 70

books selected for Oprah’s Book Club were sold due to the “Oprah Effect” [69].

Time-Varying Skew: Multi-national customer support applications tend to exhibit a

“follow the sun” cyclical workload. Here, workload demand shifts around the globe fol-
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Figure 1-1: Load on one of B2W’s databases over three days in terms of requests per minute. Load
peaks during daytime hours and dips at night.

lowing daylight hours when most people are awake. This means that the load in any geo-

graphic area will resemble a sine wave over the course of a day. For example, Figure 1-1

shows the database workload over three days of B2W Digital, the Brazilian company intro-

duced in Section 1.1. As can be seen, the peak load is about 10× the trough. If companies

like B2W could take advantage of database elasticity to use exactly as many computing

resources as needed to manage their workload, they could reduce the average number of

servers needed for their database by about half. In the case of a private cloud, these servers

could be temporarily repurposed for some other application in the organization. In a public

cloud, the reduction in servers translates directly into reduced expenses for the organiza-

tion. Time-dependent workloads may also have cyclic skew with other periodicities. For

example, an on-line application to reserve camping sites will have seasonal variations in

load, with summer months being much busier than winter months.

Load Spikes: A DBMS may incur short periods when the number of requests increases

significantly over the normal expected volume. For example, the volume on the NYSE

during the first and last ten minutes of the trading day is an order of magnitude higher than

at other times. Such surges may be predictable, as in the NYSE system, or the product

of “one-shot” effects. One encyclopedia vendor experienced this problem when it put its

content on the web and the initial flood of users after the announcement caused a huge load
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Figure 1-2: The best conditions for the E-Store and P-Store systems as a function of workload skew
and predictability

spike that crashed the service [36].

The Hockey Stick Effect: Web-based startups often see a “hockey stick” of traffic

growth. When (and if) their application becomes popular, they will have an exponential

increase in traffic that leads to crushing demand on its DBMS. This pitfall also impacts

established companies when they roll out a new product.

Given these issues, it is essential that an OLTP DBMS be elastic. That is, it must

automatically adapt to workload changes without manual intervention while preserving

ACID guarantees. For an OLTP DBMS with a shared nothing partitioned architecture, this

involves adding or removing servers to increase or decrease capacity, and rebalancing data

across nodes. If hot spots are causing one server to be overloaded, the hot tuples must be

split up and redistributed across the cluster. For unexpected changes in the workload such

as load spikes or the hockey stick effect, the DBMS must quickly react to reconfigure so it

can continue to meet throughput and latency requirements. For predictable changes such as

time varying skew, the DBMS should reconfigure proactively so that reconfiguration will

complete in advance of predicted load increases.

This thesis presents two different systems for elastically scaling an OLTP DBMS, de-

picted in Figure 1-2. The first system, called E-Store, is the most general. It can adapt to
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all of the different types of workload variation and skew described above. E-Store is ideal

for managing high skew and reacting quickly to unexpected load spikes. But some OLTP

applications have lower levels of skew and exhibit predictable, “follow the sun” behav-

ior. For these applications, the second system, called P-Store, is a better fit. P-Store uses

predictive modeling to proactively reconfigure the DBMS, and can achieve superior per-

formance to E-Store for predictable workloads. Figure 1-2 summarizes the best conditions

for each system as a function of workload skew and predictability. Although these systems

do not currently support predictable workloads with high skew, the ideas of E-Store and

P-Store are complementary, and future work should combine these systems to support a

wider variety of workloads. The next two sections introduce each system in more detail.

1.3 Fine-Grained Partitioning for Reactive Elasticity

The first system presented in this thesis is called E-Store, a planning and reconfiguration

system for shared-nothing, distributed DBMSs optimized for transactional workloads. The

main contribution of E-Store is a comprehensive framework that addresses many of the

types of workload variation and skew discussed in Section 1.2. E-Store is particularly well

suited for cases of high skew because it can detect individual tuples that are frequently

accessed and assign adequate resources for their associated transactions by placing them

explicitly on servers with sufficient capacity. Instead of monitoring and migrating data at

the granularity of pre-defined large chunks as some existing systems do [68, 82], E-Store

dynamically alters chunks by extracting their hot tuples, which are considered as sepa-

rate “singleton” chunks. Introducing this two-tiered approach combining fine-grained hot

chunks and coarse-grained cold chunks is the main technical contribution enabling E-Store

to reach its goals. E-Store supports automatic on-line hardware reprovisioning that enables

a DBMS to move its tuples between existing nodes to break up hotspots, as well as to scale

the size of the DBMS’s cluster.

E-Store identifies skew using a suite of monitoring tools. First it identifies when load

surpasses a threshold using a lightweight algorithm. When this occurs, a second monitoring

component is triggered that is integrated in the DBMS to track tuple-level access patterns.
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This information is used in E-Store’s novel two-tier data placement scheme that assigns

tuples to nodes based on their access frequency. This approach first distributes hot tuples

one at a time throughout the cluster. Then it allocates cold tuples in chunks, placing them

to fill in the remaining capacity on each cluster node. This entire process, from the moment

a load imbalance is detected to when corrective reconfiguration is started, lasts less than

twenty seconds.

The E-Store framework has been integrated into the H-Store DBMS [48], a distributed,

ACID-compliant DBMS designed for OLTP workloads. E-Store enables H-Store to auto-

matically detect load imbalances, add or remove machines as needed, and redistribute data

across the cluster to improve system performance. E-Store successfully satisfies the two

major requirements of elasticity for modern OLTP DBMSs: it guarantees ACID properties

and performs all of its actions without manual intervention.

1.4 Predictive Modeling for Proactive Elasticity

The E-Store system enables a DBMS to automatically adapt to unpredictable workload

changes to meet the throughput and latency requirements of its clients. The performance

of E-Store deteriorates during reconfiguration, however, because reconfiguration is only

triggered when the system is already under heavy load. These issues could be avoided

if reconfiguration were started earlier, but that requires knowledge of the future workload.

Fortunately, OLTP workloads often follow a cyclic, predictable pattern. The second system

presented in this thesis, P-Store, takes advantage of these patterns to reconfigure the DBMS

before performance issues arise.

Responding reactively to load changes is not an option for web-based consumer-facing

companies because their customers will experience slower response times at the start of

a load spike when the database tries to reconfigure the system to meet demand. Many

from industry have documented that slow response times for end users leads directly to

lost revenue for the company. For example, Amazon found that every 100 ms of increased

latency cost them 1% of revenue [58]. Similarly, Google stated that a 500 ms increase in

latency caused traffic to drop by 20% [59]. There are many other examples of lost revenue
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due to slow response times [15, 55, 16]. In a sense, the start of the overload period is exactly

the wrong time to begin a reconfiguration, which is a weakness of all reactive techniques.

P-Store is the first elastic OLTP DBMS to use state-of-the-art time-series prediction

techniques to forecast future load on the database. Instead of waiting for the database to

become overloaded, it proactively reconfigures the database before the overload occurs. To

decide when to start a new reconfiguration and how many machines to allocate at any given

time, P-Store uses a novel dynamic programming algorithm. The algorithm produces a

schedule that minimizes the number of machines allocated while ensuring sufficient capac-

ity for the predicted load.

To ensure that the algorithm schedules reconfigurations so they complete before an

overload happens, P-Store needs an estimate of how long each reconfiguration will take. To

create this estimate, P-Store characterizes the time required to execute its novel scheduling

algorithm for reconfiguration with minimal performance impact. P-Store also determines

the effective capacity of the system during migration, as well as the cost of migration in

terms of average machines allocated.

Similar to E-Store, P-Store has been incorporated into the H-Store DBMS. It enables

H-Store to proactively scale without manual intervention, once again guaranteeing ACID

properties throughout.

1.5 Contributions

This thesis contributes a conceptual framework and system implementation to approach the

problem of achieving high throughput and low latency for OLTP workloads in the presence

of workload skew and variability. We show that database elasticity is an effective solution,

enabling the database to automatically rebalance data and expand and contract resources to

adapt to changes in the workload.

The major contributions of this work are:

• E-Store

– A novel two-tiered partitioning strategy to enable fine-grained mapping of hot

tuples and cold chunks of data to servers.
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– A lightweight monitoring component that uses CPU utilization statistics to de-

tect load imbalances and brief periods of detailed monitoring to identify hot

tuples.

– An efficient planning component that uses greedy heuristics to produce near-optimal,

two-tiered partition plans.

• P-Store

– A novel dynamic programming algorithm to determine when and how to recon-

figure a database given accurate predictions of future load.

– A novel scheduling algorithm for executing a reconfiguration, as well as a

model characterizing the elapsed time, cost and effective system capacity dur-

ing the reconfiguration.

– An analysis showing the effectiveness of using Sparse Periodic Auto-Regression

(SPAR) for predicting database workloads.

– An open-source benchmark to model an online retail application.

• Evaluation

– A comprehensive evaluation of E-Store on three different benchmarks showing

E-Store’s ability to manage many types of workload variability and skew. The

evaluation demonstrates that under skewed workloads, the E-Store framework

improves throughput by up to 4× and reduces query latency by 10×.

– A comprehensive evaluation of P-Store using a real online retail dataset and

workload from B2W Digital (B2W). The evaluation shows that P-Store can

successfully predict and manage the workload of B2W. It outperforms E-Store

on B2W’s workload by causing 72% fewer latency violations, and achieves

performance comparable to static allocation for peak demand while using 50%

fewer resources.

• Limitations

– Both E-Store and P-Store are designed for partitionable workloads in which

transactions mostly access data corresponding to a single partitioning key. This
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restriction enables both systems to move data without considering distributed

transactions. It limits the applicability of the research for social networks and

graphs, but there are numerous other applications, especially those with a customer-

centric focus, for which the research is highly relevant.

– E-Store currently supports scaling in and out by only one machine at a time.

It can begin a new scale-out operation as soon as it has finished the previous

reconfiguration.

– P-Store assumes that load predictions are accurate to within a small error. If the

predictions are inaccurate, its performance degrades to that of a reactive system.

– P-Store expects that the workload mix (i.e., types of transactions) and database

size are not rapidly changing. Gradual changes can be handled by re-discovering

parameters of the model.

– B2W uses the Riak DBMS [56] for their production workload with a cluster of

several servers, but since H-Store is a much faster system than Riak, the work-

load can be managed by a single H-Store server. To demonstrate the benefits of

elasticity with the B2W workload, we had to add a small delay to each H-Store

transaction so that multiple servers were necessary.

– P-Store is designed for relatively uniform workloads and data distributions. The

B2W workload has transient periods of skewed access patterns, which cause

some performance degradation in P-Store.

1.6 Thesis Overview

The rest of this thesis is organized as follows:

Chapter 2 will provide background needed to understand the remainder of the thesis. It

will explain the key components of the elasticity model including monitoring the DBMS,

determining when and how to reconfigure the database, and performing live reconfiguration

of the database. Chapter 2 will also explain the details of H-Store and its live migration sys-

tem, Squall. H-Store is the OLTP DBMS used in this thesis because it is a highly scalable,

main-memory DBMS with a shared nothing, partitioned architecture. Most importantly, its
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live migration system, Squall, enables fine-grained partitioning and reconfiguration while

keeping the system transactionally consistent and highly available.

Chapter 3 will describe the E-Store system in detail. The key feature of E-Store is

a two-tiered partitioning scheme to manage “hot tuples” separately from cold tuples. The

end-to-end framework of E-Store starts with a two-phase monitoring component, which de-

tects load imbalances by monitoring CPU utilization, and in case of a load imbalance, acti-

vates tuple-level monitoring to detect hot tuples. The planning component uses a two-tiered

greedy planning algorithm to re-partition the database. Once planning is done, Squall re-

configures the database by offloading the hottest partitions first. The evaluation shows that

the two-tiered greedy planning algorithm is superior to one-tiered algorithms and performs

as well as computationally intensive approaches on three different benchmarks.

Chapter 4 will describe the P-Store system in detail. The key feature of P-Store is

its use of predictive modeling to determine when and how to reconfigure the database.

The end-to-end framework of P-Store starts with a monitoring and prediction component,

which tracks historical load on the database and uses a predictive model to forecast future

load. Then a planning algorithm uses this load prediction to determine when to reconfigure

the database so that the average number of machines is minimized, but there is always

sufficient capacity for the predicted load. Finally, Squall reconfigures the database in the

most efficient way possible that does not overload any partition. The evaluation shows that

P-Store outperforms reactive techniques on B2W Digital’s real database workload, and

saves 50% of computing resources compared to peak provisioning.

Chapter 5 will discuss related work. There are many other elasticity techniques that

have been studied, but none use E-Store’s highly effective two-tiered approach for man-

aging skew. Many stateless systems have used predictive modeling for elastic scaling, but

P-Store is the first OLTP DBMS to use prediction for this purpose. Chapter 5 also exam-

ines existing live migration techniques for VMs and databases. Both P-Store and E-Store

have used migration scheduling for Squall in a novel way to improve performance. P-Store

has gone a step further to characterize the elapsed time, cost, and system capacity during

reconfiguration, which has not been done in other systems.

Chapter 6 will discuss ideas for future directions. There are many possible extensions
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to E-Store and P-Store, and an obvious direction is to unify the systems into a single sys-

tem that can manage skew and scale proactively. Another direction for future work is to

combine elasticity with replication and try to improve performance by varying the number

of replicas for each tuple. Yet another direction is to compare the “scale out” approach

to elasticity with the “scale up” approach, and understand whether the best approach is

workload-dependent. Beyond OLTP, there are many directions for future work in elastic-

ity for analytic workloads. Even beyond elasticity, there are other ways to make DBMSs

adaptable, and future work should investigate new methods for adaptation.

Finally, Chapter 7 will conclude with a summary of the research.
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Chapter 2

Background

This chapter introduces the elasticity model and discusses the applicability of the ideas in

this thesis. Next, it provides an overview of the underlying architecture of H-Store [54], the

multi-node, shared nothing main-memory OLTP DBMS used by the systems presented in

this thesis. Finally, it describes Squall [28], the system used by H-Store for live migration

of data.

2.1 Elasticity Model

As described in Chapter 1, many new OLTP DBMSs have adopted a shared nothing, parti-

tioned architecture to achieve superior scalability and performance. As such, shared noth-

ing, partitioned DBMSs are the focus of the elasticity model in this thesis. Figure 2-1 shows

a schematic of this architecture and the path of a sample transaction. The five steps along

the path are: (1) A client sends a query to the DBMS to retrieve data for the employee with

ID = 2. (2) A transaction manager looks up the partitioning key ID = 2 in a table to find

which server contains the data. (3) The transaction manager finds that the data resides on

Server 1, so it forwards the query to that server. (4) Server 1 executes the query on its local

partition of the EMPLOYEES table. (5) The DBMS returns the result, which consists of a

single row including the ID and the employee’s name, John.

This example demonstrates one of the key advantages of the shared nothing, partitioned

architecture: since Server 1 contains all of the data needed by the query, no communication
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Figure 2-1: Schematic of a shared nothing, partitioned DBMS

with other servers is necessary. If other clients simultaneously issue similar transactions

for data on other servers, the transactions can be executed in an “embarrassingly parallel”

fashion. A downside of this architecture is that it is highly sensitive to changes in access

patterns. For example, if some of the data on Server 1 becomes “hot”, Server 1 might

become overloaded and start to perform poorly. Because Servers 2 and 3 do not have

access to the hot data, they will be mostly idle. A shared storage architecture in which

all three servers have access to all data could alleviate some of the issues of skew for a

read-only workload, but this architecture is still susceptible to skew for a workload with

writes. This susceptibility is due to the fact that despite the shared storage layer, data

accesses are typically still partitioned between servers at the computation layer to avoid

concurrency issues and cache misses. Regardless of the architecture, if the aggregate load

increases beyond what three servers can handle, all servers will become overloaded even if

there is no skew.

In order for a shared nothing, partitioned DBMS to be resilient to changes in access

patterns and aggregate load, it requires a mechanism for elasticity which can perform the

following two actions:
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Figure 2-2: Schematic of a shared nothing, partitioned DBMS with an elasticity subsystem

1. Add or remove servers as needed to manage an increase or decrease in aggregate load

2. Move data between servers by repartitioning (resharding) the database to balance

load

. Figure 2-2 shows a schematic of the same database from Figure 2-1, but with the addition

of an elasticity subsystem. The high level elasticity model in this thesis has three major

components: a Monitor, a Planner, and a Live Migration System. We will return to this

figure in Chapters 3 and 4 to discuss how E-Store and P-Store each implement and extend

this model. (1) The Monitor is responsible for collecting data as the DBMS runs, and

triggering a reconfiguration if certain conditions are met. For example, the monitoring

component in E-Store triggers a reconfiguration if CPU utilization falls above or below

certain thresholds for a specified period of time. (2) Once reconfiguration is triggered,

the Monitor sends data to the Planner, which is responsible for updating the partition plan

according to the policies of the specific elasticity system. In the example shown, the Planner

updates the partition plan so that keys 1 and 11 are moved to Server 4. (3) The Planner sends
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Figure 2-3: A tree-based schema in which all non-replicated tables in the database are connected
to the root table via primary-key-foreign-key relationships

the new plan to the Live Migration System, which is responsible for reconfiguring the data

in the database to match the new partition plan. In this example, the Live Migration System

adds a fourth server and moves Bob and Anne (IDs 1 and 11) to the new server.

The shared nothing, partitioned architecture is ideal for workloads whose transactions

access data at a single node, but workloads with distributed transactions, i.e. transactions

that span multiple nodes, execute slower [76]. Obviously any data rearrangement by an

elastic DBMS could change the number of multi-node transactions. Therefore, the Plan-

ner component of these systems must consider what data elements are accessed together

by transactions when making decisions about data placement and load balancing. This

presents a complex optimization environment. Hence, this thesis focuses on an important

subset of the general case. Specifically, it assumes all non-replicated tables of an OLTP

database form a tree-schema based on foreign key relationships (see Figure 2-3). Although

this rules out graph-structured schemas (such as social networks) and m-n relationships,

it applies to many real-world OLTP applications [89]. For example, any customer-centric

application such as an online retail or commercial banking application will be easily parti-

tionable by customer ID.

A straightforward physical design for tree schemas is to partition tuples in the root node

and then co-locate every descendant tuple with its parent tuple. This co-location tuple allo-

cation strategy is the best strategy as long as the majority of transactions access the schema

tree via the root node and descend some portion of it during execution by following foreign

key relationships. Consistent with the tree metaphor, this access pattern follows root-to-leaf

order. For example, in the popular OLTP database benchmark TPC-C [96], tuples of all
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non-replicated tables have a foreign key identifier that refers to a tuple in the WAREHOUSE

table. Moreover, 90% of the transactions access the database in root-to-leaf order. As a

result, partitioning tables based on their WAREHOUSE id and co-locating descendant tuples

with their parent minimizes the number of multi-partition transactions.

This thesis assumes that the DBMS starts with a co-location allocation, and the problem

for the elasticity planner is to find a second co-location allocation that balances the load and

does not overload nodes. Distributed transactions are not considered as part of the planning

process.

2.2 H-Store System Architecture

The elasticity techniques discussed in this thesis are generic and can be adapted to any

shared-nothing, partitioned DBMS for workloads with tree structured schemas. H-Store is

the DBMS used by the initial prototypes of E-Store and P-Store because it is an ACID-

compliant DBMS with a shared nothing, partitioned architecture, and it has a live migra-

tion system for reconfiguring the database. This section provides more background about

H-Store, and the following section describes its live migration system, Squall.

H-Store is a distributed, main-memory DBMS that runs on a cluster of shared-nothing

compute nodes [54]. Figure 2-4 illustrates the H-Store architecture. An H-Store instance is

defined as a cluster of two or more nodes deployed within the same administrative domain.

A node (also called a server) is a single physical machine that manages one or more logical

data partitions.

Each partition is assigned to a single-threaded execution engine that has exclusive ac-

cess to the data at that partition. This engine is assigned to a single CPU core in its host

node. The single-threaded nature of the execution engine means that transactions accessing

a single partition do not require any locks or latches, making execution extremely efficient.

When a transaction finishes execution, the engine can work on another transaction. Each

node also contains a coordinator that allows its engines to communicate with the engines

on other nodes.

H-Store supports ad-hoc queries but it is optimized to execute transactions as stored
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Figure 2-4: The H-Store Architecture.

procedures. This thesis uses the term transaction to refer to an invocation of a stored

procedure. A stored procedure contains control code (i.e., application logic) that invokes

pre-defined parameterized SQL commands. A client application initiates a transaction by

sending a request (a stored procedure name and input parameters) to any node. Each trans-

action is routed to one or more partitions and their corresponding servers that contain the

data accessed by a transaction.

H-Store supports replicating tables on all servers, which is particularly useful for small

read-only tables. This work, however, focuses on horizontally partitioned tables, where

the tuples of each table are split into disjoint sets and allocated without redundancy to the

various nodes managed by H-Store. The assignment of tuples to partitions is determined

by one or more columns, which constitute the partitioning key, and the values of these

columns are mapped to partitions using either range- or hash-partitioning. Transactions are

thus routed to specific partitions based on the set of partitioning keys they access. Most

tables in the workloads we study have only one partitioning attribute, but H-Store supports

partitioning based on an arbitrary number of columns.

H-Store can run at close to the speed of main memory as long as data is not heavily

skewed, there are few distributed transactions, and there are enough CPU cores and data

partitions to handle the incoming requests. This thesis will show how scaling out and
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plan:{

``warehouse (W_ID)'': {

``Partition 1'' : [0-3)

``Partition 2'' : [3-5)

``Partition 3'' : [5-9)

``Partition 4'' : [9-10)

}}

(a) Old Plan

plan:{

``warehouse (W_ID)'': {

``Partition 1'': [0-2)

``Partition 2'': [3-5)

``Partition 3'': [2-3),[5-6)

``Partition 4'': [6-10)

}}

(b) New Plan

Figure 2-5: An example of an updated partition plan for a TPC-C database.

reconfiguring H-Store with a live migration system can help alleviate performance issues

due to skew and heavy loads. Prior work has also shown how to alleviate performance

issues due to distributed transactions [83].

Although the techniques discussed in this thesis are implemented for H-Store, they are

generic and can be adapted to other shared-nothing DBMSs that use horizontal partitioning,

whether or not the interface is through stored procedures. H-Store’s speculative execution

facilities [77] are competitive with other concurrency control schemes and its command

logging system has been shown to be superior to data logging schemes [62].

2.3 The Squall Live Migration System

To elastically scale a shared nothing system such as H-Store, it is necessary to move data

between nodes. Squall [28] has been built into H-Store for this purpose, and it is the data

migration system used by both E-Store and P-Store. Unlike some other DBMSs, H-Store

is designed for OLTP workloads which require strong consistency and high availability.

Therefore, when migrating data, Squall must ensure transactional consistency while also

keeping the system live and available to process transactions with minimal overhead.

Squall supports fine-grained reconfiguration with flexible range partitioning, in which

any number of ranges may be mapped to a single partition, and ranges may be of arbitrary

size. This scheme is ideal for elasticity because it allows for maximum flexibility when

assigning tuples to partitions. For example, E-Store assigns hot tuples to specific partitions
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using ranges of size one. A partition plan is used to define the partitioning scheme of

the database, and can be represented with a json file mapping ranges of keys to partitions.

When E-Store and P-Store determine that a reconfiguration is required for elastic scaling

or load balancing, they start from the current partition plan and determine a new plan with

the desired configuration (the details of this planning process will be discussed later). An

example of such a transformation for a TPC-C database with ten warehouses is shown in

Figure 2-5. Given the new plan, Squall is responsible for physically moving data so that

the storage layout of the database matches the new plan.

To execute reconfiguration, Squall proceeds though three stages: initialization, migra-

tion, and termination. Let us examine each phase in detail.

2.3.1 Initialization

There is one distributed transaction across all nodes to start the reconfiguration, so that

all servers are simultaneously aware of the new partition plan and that reconfiguration is

under way. One node is designated as the “leader”. After the initial distributed transaction,

initialization proceeds in a decentralized manner. Given the old and new plans, each node

individually determines which ranges of keys are moving in or out. This can be done by

essentially performing a “diff” between the two plans. A single partition may be a source

for some ranges that are moving out, and a destination for other ranges that are moving

in. In Figure 2-5, for example, partition 3 is both a source and a destination for different

ranges. After determining the incoming and outgoing ranges for its local partitions, each

node creates data structures to track the progress of these ranges. Initially, each range is

labeled as “not started”.

2.3.2 Migration

After initialization, each destination partition begins to asynchronously issue pull requests

for its incoming ranges to the source partition(s). When a source partition receives a pull

request, it extracts the requested data and sends it to the destination. To ensure transactional

consistency, Squall conforms to H-Store’s single-threaded model of execution: while data
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is being extracted from the source partition, no other transactions can be executed on that

partition. Similarly, while data is being loaded at the destination, no transactions can be

executed there. Therefore, moving large amounts of data may cause transactions to be

blocked for a long period of time. To prevent performance issues that could be caused

by large migrations, Squall splits up large ranges into smaller chunks, and spaces them

apart in time. Interleaving transactions between pulls is what allows Squall to complete

reconfiguration with minimal performance impact. The size of each chunk and the amount

of time between pulls can be tuned based on the application’s tolerance to performance

degradation and desired total reconfiguration time.

As soon as a range has begun to move, it is marked “partial” in the data structures of

the source and destination nodes. When the last chunk has been sent or received for a given

range, the range is marked “complete”. If a transaction arrives at a partition and attempts

to access an incoming range that has been marked “not started” or “partial”, a blocking

request is issued to the source partition to extract the remaining data so the transaction can

execute on the destination partition. When all incoming ranges for a node’s local partitions

have been marked “complete”, the node notifies the leader that it has received all of the

data it is expecting.

Squall does not by default specify an order for the pull requests, so both E-Store and

P-Store have extended Squall to enable deliberate scheduling of reconfigurations. For ex-

ample, a major goal of E-Store is to reduce hot spots, so it instructs Squall to prioritize data

movements that offload data from hot partitions to cold partitions. One of P-Store’s goals

is to eliminate the performance impact of reconfiguration, so it schedules data movements

in such a way that reconfiguration completes as fast as possible while never overloading a

single partition. The details of these scheduling algorithms will be discussed in Chapters 3

and 4.

2.3.3 Termination

Once all nodes have notified the leader that they have received all expected data, the leader

broadcasts a notification that reconfiguration has completed. Each node deletes the data
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structures that were set up to track reconfiguration, and returns to normal execution.

2.4 Summary

This chapter has described the elasticity model of this thesis, which consists of three major

components: a Monitor, a Planner, and a Live Migration System. The elasticity model is

designed for OLTP DBMSs with a shared nothing, partitioned architecture, and for work-

loads with a tree-structured schema. The two elasticity systems presented in this thesis

have been integrated into H-Store, a main-memory, shared nothing DBMS which is highly

scalable for partitionable workloads. H-Store is also ideal for elasticity because of its live

migration system, Squall. Squall supports fine-grained partitioning and reconfiguration,

and reconfigures the database with minimal performance disruption.
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Chapter 3

E-Store

E-Store is an elastic database system designed to adapt to workload changes, with a special

focus on managing skew using a two-tiered partitioning scheme. This chapter describes the

E-Store system in detail, including its components for monitoring load on the database and

detecting hot spots, algorithms for repartitioning the database to achieve load balancing and

scalability, and interactions with the live migration system for executing the reconfigura-

tion. An evaluation of E-Store on three different workloads shows its ability handle many

different types of variability and skew, improving throughput by up to 4× and reducing

latency by 10×.

Figure 3-1 shows E-Store’s major extensions to the model introduced in Chapter 2. As

shown in the orange boxes, the key differentiators of E-Store are a hot tuples detector in

the monitoring component, two-tiered planning algorithms for repartitioning the database,

and a live migration scheduler which offloads hot partitions first.

3.1 Motivation

To illustrate the impact of skew on an OLTP DBMS, we conducted an initial experiment

using the Yahoo! Cloud Serving Benchmark (YCSB) [19] on a five-node H-Store clus-

ter. YCSB is a workload designed to test key-value data stores, and consists mostly of

single-key reads and updates on a single table. For this setup, we used a database with

60 million tuples that are each 1KB in size (∼60GB in total) that are deployed on 30 par-
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Figure 3-1: Schematic of a shared nothing, partitioned DBMS with an elasticity subsystem. Special
components of E-Store are shown in the orange boxes.

titions (six per node). Additional details of the evaluation environment are described in

Section 3.5. We modified the YCSB workload generator to issue transaction requests with

three access patterns:

1. No Skew: A baseline uniform distribution.

2. Low Skew: A Zipfian distribution where two-thirds of the accesses go to one-third

of the tuples.

3. High Skew: The above Zipfian distribution applied to 40% of the accesses, com-

bined with additional “hotspots”, where the remaining 60% of the accesses go to 40

individual tuples in partition 0.

For each skew pattern, we ran the workload for ten minutes and report the average

throughput and latency of the system. We also collected the average CPU utilization per

partition in the cluster.

We see in Figure 3-2 that the DBMS’s performance degrades as the amount of skew

in the workload increases: Figure 3-2a shows that throughput decreases by 4× from the
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Figure 3-2: Latency and throughput measurements for different YCSB workloads with varying
amounts of skew. In Figure 3-2c, we show the total tuple accesses per partition over a 10 second
window for the high skew workload.

no-skew to high-skew workload, while Figure 3-2b shows that latency increases by 10×.

To help understand why this occurs, the chart in Figure 3-2c shows the number of tuples that

were accessed by transactions for the high-skew workload. We see that partition 0 executes

an order of magnitude more transactions than the other partitions. This means that the

queue for that partition’s engine is longer than others causing the higher average latency.

Also, other partitions are idle for periods of time, thereby decreasing overall throughput.

This load imbalance is also evident in the CPU utilization of the partitions in the clus-

ter. In Figure 3-3, we see that the variation of CPU utilization among the 30 partitions

increases proportionally to the amount of load skew. Again, for the high skew workload in

Figure 3-3c, partition 0 has the most utilization because it has the highest load.
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Figure 3-3: Partition CPU utilization for the YCSB workload with varying amounts of skew. The
database is split across five nodes, each with six partitions.

3.2 The E-Store Framework

To ensure high performance and availability, a distributed DBMS must react to changes in

the workload and dynamically reprovision the database without incurring downtime. This

problem can be broken into three parts:

1. How to identify load imbalance requiring data migration?

2. How to choose which data to move and where to place it?

3. How to physically migrate data between partitions?

The E-Store framework shown in Figure 3-4 handles all three issues for OLTP appli-

cations. It is comprised of three components that are integrated with the DBMS. To detect

load imbalance and identify the data causing it, the E-Monitor component communicates

with the underlying OLTP DBMS to collect statistics about resource utilization and tuple

accesses. This information is then passed to the E-Planner to decide whether there is a
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Figure 3-4: The E-Store Architecture.

need to add or remove nodes and/or re-organize the data. The E-Planner generates a recon-

figuration plan that seeks to maximize system performance after reconfiguration while also

minimizing the total amount of data movement to limit migration overhead. An overview

of how E-Monitor and E-Planner work together to rebalance a distributed DBMS is shown

in Figure 3-5.

For physically moving data, E-Store leverages Squall, the live migration system for

H-Store. As described in Section 2.3, Squall uses the new reconfiguration plan generated

by the E-Planner to decide how to physically move the data between partitions while the

DBMS continues to execute transactions. This allows the DBMS to remain on-line during

the reconfiguration with only minor degradation in performance.

We now describe how E-Store moves data across the cluster during a reorganization and

its two-tier partitioning scheme that assigns data to partitions. We then discuss the details

of the E-Monitor and E-Planner components in Sections 3.3 and 3.4, respectively.

3.2.1 Data Migration

E-Store uses an updated version of the Squall live migration system described in Sec-

tion 2.3. As mentioned previously, Squall does not by default specify the order of data

migrations. For this reason, Squall has been modified for E-Store to include an optimizer
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Figure 3-5: The steps of E-Store’s migration process.

that decides the order that data is migrated. The optimizer makes the order of migration

explicit by splitting the reconfiguration plan into sub-plans, which are executed serially.

As shown in the example in Figure 3-6, the plan on the left moves data from partition 1

to partitions 2, 3, and 4. The plan is then divided into three separate sub-plans that each

migrate data from partition 1 to just one partition at a time. In the case of applications

with many partition keys, such as Voter [90] and YCSB, Squall calculates the ranges of

keys that need to be moved and places the ranges that have the same source and destina-

tion partitions into the same sub-plan. For applications with fewer unique partition keys,

however, this method generates sub-plans that move an excessive amount of data for each

key. For example, moving a single WAREHOUSE id in the TPC-C benchmark will end up

moving many tuples, because as described in Section 2.1, we use a hierarchical co-location

strategy for TPC-C to place all tuples of non-replicated tables according to their primary

or foreign key WAREHOUSE id. In this case, Squall further subdivides single-key ranges by

using secondary and tertiary partitioning attributes, thereby limiting the amount of data

moved in each sub-plan. For example, the DISTRICT id can be used as a secondary parti-
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plan:{ ``warehouse (W_ID)'':{

``Partition 1->2'' : [1-2),

``Partition 1->3'' : [2-3),

``Partition 1->4'' : [3-4)

}}

↗

→

↘

plan:{ ``warehouse (W_ID)'':{

``Partition 1->2'' : [1-2) }}

plan:{ ``warehouse (W_ID)'':{

``Partition 1->3'' : [2-3) }}

plan:{ ``warehouse (W_ID)'':{

``Partition 1->4'' : [3-4) }}

Figure 3-6: A sample reconfiguration plan split into three sub-plans.

District'1' District'10'

Warehouse'1'

Order'1'

Customer'1' Customer'3,000'

Order'5'

…'

…'

…'

Par$$on'1'

Order'YYY1'

Customer'XXX'

Order'YYY8''…'

District'2'

Customer'YYY'

Par$$on'2'

Figure 3-7: During reconfiguration in TPC-C, Squall uses secondary partitioning to split the
DISTRICT table to avoid moving an entire WAREHOUSE entity all at once. While migration is in
progress, the logical warehouse is split across two partitions, causing some distributed transactions.

tioning attribute for most of the TPC-C tables during migration. Each warehouse contains

10 DISTRICT records, so by partitioning the tables using their DISTRICT ids, Squall can

split a warehouse into 10 pieces to limit the overhead of each data pull (see Figure 3-7).

Splitting the ranges in this way increases the number of distributed transactions in TPC-C,

but avoids blocking execution for extended periods by throttling migrations.

After producing the sub-plans, the optimizer prioritizes them based on which ones send

data from the most overloaded partitions to the least overloaded partitions. This splitting

ensures that overloaded partitions are relieved as quickly as possible. It also allows periods

of idle time to be inserted between the execution of each sub-plan to allow transactions
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to be executed without the overhead of Squall’s migrations. In this way, any transaction

backlog is dissipated. We found that 100 sub-plans provided a good balance between lim-

iting the duration of reconfiguration and limiting performance degradation for all of the

workloads that we evaluated. In general, this number is workload-dependent and should

be tuned based on the desired duration of reconfiguration and tolerance for performance

degradation. For example, larger databases requiring significantly more data to be moved

during reconfiguration would likely require more sub-plans.

To execute a sub-plan, the leader first checks whether there is an ongoing reconfig-

uration. If not, it atomically initializes all partitions with the new plan. Each partition

then switches into a special mode to manage the migration of tuples while also ensuring

the correct execution of transactions during reconfiguration. During the migration, trans-

actions may access data that is being moved. When a transaction (or local portion of a

multi-partition transaction) arrives at a node, Squall checks whether it will access data that

is moving in the current sub-plan. If the data is not local, then the transaction is routed

to the destination partition or is restarted as a distributed transaction if the data resides on

multiple partitions.

3.2.2 Two-Tiered Partitioning

Most distributed DBMSs use a single-level partitioning scheme whereby records in a data

set are hash partitioned or range partitioned on a collection of keys [76, 20]. This approach

cannot handle fine-grained hot spots, such as the NYSE example from Section 1.2. If two

heavily traded stocks hash to the same partition, it will be difficult to put them on separate

nodes. Range partitioning also may not perform well since those two hot records could be

near each other in the sort order for range-partitioned keys. One could rely on a human

to manually assign tuples to partitions, but identifying and correcting such scenarios in a

timely manner is non-trivial [33].

To deal with such hot spots, E-Store uses a two-tiered partitioning scheme. It starts

with an initial layout whereby root-level keys are range partitioned into blocks of size B

and co-located with descendant tuples. We found that a block size of B = 100,000 keys
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worked well for a variety of workloads, and that is what we used in the Voter and YCSB

experiments in this chapter. For TPC-C, which has only a few root keys, we set B = 1.

In general, B is somewhat workload-dependent and varies based on the number of distinct

root keys. Ideally, B should be less than 1% of the total number of distinct root keys, but

not so small that the key ranges become excessively fragmented over time.

Given this initial partitioning of keys, E-Store identifies a collection of k keys with high

activity, where k is a user-defined parameter. For most workloads we found that setting

k to the top 1% of keys accessed during a specified time window produced good results,

as discussed in Section 3.5.2. These keys are extracted from their blocks and allocated

to nodes individually. In short, we partition hot keys separately from cold ranges. The

framework is illustrated in Figure 3-5. While this approach works well with any num-

ber of root-level keys, workloads with a large number of root-level keys will benefit the

most. Thus, our two-tiered partitioning scheme is more flexible than previous one-tiered

approaches because it accommodates both hot keys and cold ranges.

3.3 Adaptive Partition Monitoring

In order for E-Store’s reorganization to be effective, it must know when the DBMS’s per-

formance becomes unbalanced due to hotspots, skew, or excessive load. The framework

must also be able to identify the individual tuples that are causing hotspots so that it can

update the database’s two-tier partitioning scheme.

A major challenge in continuous monitoring for high-performance OLTP DBMSs is the

overhead of collecting and processing monitoring data. The system could examine trans-

actions’ access patterns based on recent log activity [87], but the delay from this off-line

analysis would impact the timeliness of corrective action [33]. To eliminate this delay the

system could monitor the usage of individual tuples in every transaction, but this level of

monitoring is expensive and would significantly slow down execution.

To avoid this problem, E-Store uses a two-phase monitoring component called the

E-Monitor. As shown in Figure 3-4, E-Monitor is a standalone program running con-

tinuously outside of the DBMS. During normal operation, the system collects a small
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amount of data from each DBMS node using non-intrusive OS-level statistics such as

CPU utilization [53]. Once an imbalance is detected, E-Monitor triggers per-tuple mon-

itoring that is implemented directly inside of the DBMS. After a brief collection period,

E-Monitor switches back to lightweight mode and sends the data collected during this

phase to E-Planner to generate a migration plan for the DBMS. We now describe these

two monitoring phases in more detail.

3.3.1 Phase 1: Collecting System Level Metrics

In the first phase, E-Monitor periodically collects OS-level metrics of the CPU utiliza-

tion for each partition on the DBMS’s nodes. Such coarse-grained, high-level information

about the system is inexpensive to obtain and still provides enough actionable data. Using

CPU utilization in a main memory DBMS provides a good approximation of the system’s

overall performance. However, monitoring adherence to service-level agreements (e.g., la-

tency thresholds) [29] would provide a better idea of application performance, and we are

considering adding support for this in E-Store as future work.

When E-Monitor polls a node, it retrieves the current utilization for all of the partitions

at that node and computes the moving average over the last 60 seconds. E-Monitor uses

two thresholds, a high- and low-watermark, to control whether corrective action is needed.

These thresholds are set by the database administrator based on a trade-off between system

response time and the desired resource utilization level. If the average utilization across

the whole cluster goes below the low-watermark, E-Store will choose to take the most

under-utilized node off-line. If the high-watermark is exceeded by at least one partition,

the system should balance load and add more servers, if needed. If a watermark is exceeded,

E-Monitor triggers a phase of more detailed tuple-level monitoring.

For our experiments in Section 3.5, we configured the system to check each node ev-

ery five seconds; retrieving utilization data more often than this did not make a signif-

icant difference in how quickly E-Store was able to respond to imbalance. We set the

high-watermark to 90% to leave some headroom for sudden load spikes. Likewise, we set

the low-watermark to 50% to avoid scaling in too eagerly.
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3.3.2 Phase 2: Tuple-Level Monitoring

Once E-Monitor detects an imbalance, it starts the second phase of tuple-level monitoring

on the entire cluster for a short period of time. The framework gathers information on the

hot spots causing the imbalance to determine how best to redistribute data. Since E-Store

focuses on tree-structured schemas and their co-location strategies (see Section 2.1), moni-

toring only the root tuples provides a good approximation of system activity and minimizes

the overhead of this phase.

We define the hot tuples to be the top-k most frequently accessed tuples within the time

window W . A tuple is counted as “accessed” if it is read, modified, or inserted by a transac-

tion. For this discussion, let {r1,r2, . . . ,rm} be the set of all tuples (records) in the database

and {p1, p2, . . . , pc} be the set of partitions. For a partition p j, let L(p j) denote the sum

of tuple accesses for that partition and TK(p j) denote the set of the top-k most frequently

accessed tuples. Thus, a tuple ri is deemed “hot” if ri ∈ TK. For convenience, we have

included these and other symbols used throughout the chapter in a table in Appendix A.

When tuple-level monitoring is enabled, the DBMS initializes an internal histogram at

each partition that maps a tuple’s unique identifier to the number of times a transaction ac-

cessed that tuple. After the time window W has elapsed, the execution engine at each node

assembles L and TK for its local partitions and sends them to E-Monitor. Once E-Monitor

receives this information from all partitions, it generates a global top-k list. This list is used

by E-Store’s reprovisioning algorithms to build a reconfiguration plan. This monitoring

process enables E-Monitor to collect statistics on all root-level tuples. The accesses that

do not correspond to top-k tuples are aggregated to obtain access frequencies for the “cold

blocks” of tuples.

The database administrator should configure the monitoring time window for this phase

to be the shortest amount of time needed to find hot tuples. The optimal value for W

depends on the transaction rate and the access pattern distribution. Likewise, it is important

to choose the right size for k so that enough tuples are identified as “hot.” There is a

trade-off between the accuracy in hot spot detection versus the additional overhead on

an already overloaded system. We analyze the sensitivity of E-Store to both parameters
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in Section 3.5.2.

3.4 Reprovisioning Algorithms

After E-Monitor collects tuple-level access counts, E-Planner uses this data to generate a

new partitioning scheme for the database. We now discuss several algorithms for automat-

ically generating a two-level partitioning scheme. We first discuss how E-Planner decides

whether to increase or decrease the number of nodes in the cluster. We then describe several

strategies for generating new reconfiguration plans to reorganize the database.

All of the reconfiguration plans generated by E-Planner’s algorithms begin by promot-

ing any tuples that were newly identified as hot from block allocation to individual place-

ment. Likewise, any tuple that was previously hot but is now identified as cold is demoted to

the block allocation scheme. Then the new top-k hot tuples are allocated to nodes. Moving

individual tuples between nodes requires little network bandwidth and can quickly alleviate

load imbalances, so E-Planner performs these allocations first. If there is still a predicted

load imbalance, E-Planner allocates cold blocks as a final step.

Our reprovisioning algorithms currently do not take the amount of main memory into

account when producing reconfiguration plans. Adapting to database size changes is left as

future work.

3.4.1 Scaling Cluster Size Up/Down

Before starting the reprovisioning process, E-Planner determines whether to maintain the

DBMS’s present cluster size or whether to add or remove nodes. It makes this decision

by using the CPU utilization metrics collected during monitoring. If the average CPU

utilization across the whole cluster exceeds the high-watermark, the framework allocates

new partitions. In the same way, if the average utilization is less than the low-watermark,

it will decommission partitions. E-Store currently only supports changing the DBMS’s

cluster size by a single node for each reconfiguration round.

54



3.4.2 Optimal Placement

We developed two different reprovisioning strategies derived from the well-known “bin

packing” algorithm. Both of these approaches use an integer programming model to gen-

erate the optimal assignment of tuples to partitions. As the evaluation will show, these

algorithms take over 20 hours to run, so they are not practical for real-world deployments.

Instead, they provide a baseline with which to compare the faster approximation algorithms

that we present in the subsequent section.

We now describe our first bin packing algorithm that generates a two-tier placement

where individual hot tuples are assigned to specific partitions and the rest of the “cold”

data is assigned to partitions in blocks. We then present a simplified variant that only

assigns blocks to partitions.

Two-Tiered Bin Packing: This algorithm begins with the current load on each partition

and the list of hot tuples. The integer program has a decision variable for each possible

partition-tuple assignment, and the constraints allow each hot tuple set to be assigned to

exactly one partition. In addition, there is a decision variable for the partition assignment

of each block of B cold tuples. The program calculates each partition’s load by summing

the access counts of its assigned hot and cold tuple sets. The final constraint specifies that

each partition has an equal share of the load,±ε . Therefore, if A is the average load over all

partitions, the resulting load on partition p j must be in the range A−ε ≤ L(p j)≤A+ε . The

planner’s objective function minimizes tuple movement while adhering to each partition’s

capacity constraints, thereby favoring plans with lower network bandwidth requirements.

For each potential assignment of a hot tuple ri to partition p j, there is a binary decision

variable xi, j ∈ {0,1}. Likewise, for each potential assignment of a cold tuple block bk

to partition p j, there is a variable yk, j ∈ {0,1}. In the following equations, we assume a

database with n hot tuples, d cold tuple blocks, and c partitions. As defined in Section 3.3.2,

L(ri) is the load (access count) on tuple ri. Our first constraint requires that each hot tuple

set is assigned to exactly one partition, so for each hot tuple set ri,

c

∑
j=1

xi, j = 1 (3.1)
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Likewise, for each cold block bk,

c

∑
j=1

yk, j = 1 (3.2)

We seek a balanced load among the partitions, giving them a target load of A±ε , so for

each partition p j,

L(p j) =
n

∑
i=1

(xi, j×L(ri))+
d

∑
k=1

(yk, j×L(bk))≥ A− ε (3.3)

If a tuple is not assigned to its original partition according to the reconfiguration plan,

it has a transmission cost of T . We assume that all machines in the cluster are located in

the same data center, and therefore the transmission cost between any two partitions is the

same. Thus, without loss of generality, we can set T = 1. We represent the transmission

cost of assigning tuple ri to partition p j as a variable ti, j ∈ {0,T}. Our objective function

selects placements with reduced transmission overhead. Hence, it minimizes:

n

∑
i=1

c

∑
j=1

(xi, j× ti, j)+
d

∑
k=1

c

∑
j=1

(yk, j× tk, j×B) (3.4)

Clearly, moving individual hot sets is less expensive than transmitting blocks of B cold

tuples.

One-Tiered Bin Packing: This is the same procedure as the 2-tiered algorithm but

without using a list of hot tuples. Hence, rather than dividing the problem into hot and cold

parts, all tuples are assigned using a single planning operation in which data is managed

in blocks of size B. This scheme saves on monitoring costs as it does not require tuple

tracking, but it is not able to generate a fine-grained partitioning scheme. One-tiered bin

packing simulates traditional one-level partitioning schemes [76, 20]. This approach may

perform well when data access skew is small, but it is unlikely to work in the presence of

substantial skew.
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3.4.3 Approximate Placement

The bin packing algorithms provide a baseline for optimal reconfiguration of the database,

but they are not practical for most applications. Because E-Store is intended for use in

OLTP applications where performance is paramount, we set out to design algorithms capa-

ble of producing high quality partition plans in a much shorter timeframe – on the order of

seconds rather than hours. To this end, we implemented the following practical algorithms

to assign hot tuples and cold blocks to partitions.

Greedy: This simple approach assigns hot tuples to partitions incrementally via locally

optimal choices. It iterates through the list of hot tuples starting with the most frequently

accessed one. If the partition currently holding this tuple has a load exceeding the average

A± ε as in Section 3.4.2, the Greedy algorithm sends the tuple to the least burdened parti-

tion. It continues to the next most popular tuple until all have been redistributed. Although

this algorithm operates in linear time, its usefulness is limited because this scheme only

makes locally optimal decisions. It also does not move any blocks of cold tuples, which

could impact its performance on workloads with lower levels of skew.

Greedy Extended: This algorithm first executes the Greedy algorithm for hot tuples.

If one or more partitions are still overburdened after rebalancing, this scheme executes a

similar operation with the cold blocks. Each over-burdened server sends blocks of B tuples

to the server with the lowest load until all partitions are within the bounds of capacity.

The Greedy Extended algorithm’s runtime is comparable to that of the standard Greedy

algorithm.

First Fit: This approach globally repartitions the entire database using a heuristic that

assigns tuples to partitions one at a time. It begins with the list of hot tuples sorted by their

access frequency. The scheme places the hottest tuple at partition 0. It continues to add hot

tuples to this partition until it has reached capacity, at which point the algorithm assigns

tuples to partition 1. Once all the hot tuples have been placed, the algorithm assigns cold

blocks to partitions, starting with the last partition receiving tuples. This approach favors

collocating hot tuples and runs in constant time. In some circumstances it leads to better

utilization of the DBMS’s CPU caches, because hot partitions serve fewer items. But it
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also makes the first partitions more vulnerable to overload because they are handling the

hottest data. Moreover, because this algorithm does not make any attempt to minimize the

movement of tuples during reconfiguration, the migration process may be expensive and

cause temporary performance degradation. The evaluation shows that First Fit is inferior

to the Greedy Extended approach for the reasons just mentioned, but we include it for

completeness as it is a popular bin packing algorithm used in other work [21, 80, 105].

In summary, we propose three techniques for managing data placement for an elasti-

cally scaling transaction processing system. We use one- and two-tiered bin-packing “ora-

cles” to construct optimal partitioning plans. We then compare these unrealistic approaches

to the more practical approximation algorithms.

3.5 Evaluation

We now present our evaluation of the E-Store framework integrated with H-Store. We con-

ducted an extensive set of experiments using large datasets and three different benchmarks

to analyze the parameter sensitivity and performance of E-Store. We report our time-series

results using a sliding-window average.

All of the experiments were conducted on a cluster of 10 Linux nodes connected by

a 10Gb switch. Each node has two Intel Xeon quad-core processors running at 2.67GHz

with 32GB of RAM. We used the latest version of H-Store with command logging enabled

to write out transaction commit records to a 7200 RPM disk. We did not find logging to be

a significant bottleneck in our experiments.

3.5.1 Benchmarks

We now describe the workloads that we used in our evaluation. For all three benchmarks,

we examined three access patterns; no skew, low skew, and high skew.

Voter: The Voter Benchmark [90] simulates a phone-based election application. It is

designed to saturate the DBMS with many short-lived transactions that all update a small

number of records. The database consists of three tables. Two tables are read-only and

replicated on all servers: they store the information related to contestants and map area
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codes to the corresponding locations. The third table stores the votes and it is partitioned;

the telephone number of the voter is used as the partitioning attribute. An individual is

only allowed to vote a fixed number of times. As mentioned above, we use three different

types of skew: no skew, low skew, and high skew. Low skew simulates local interest in

the contest, and is modeled by a Zipfian distribution where two-thirds of the accesses go

to one-third of the tuples. High skew simulates highly localized interest where 30 phone

numbers are responsible for attempting to vote 80% of the time. The remaining 20% of

votes follow the Zipfian distribution described above. The 30 hot phone numbers will use

up their allowed votes, but their continued effort to vote will strain database resources on

their partition.

YSCB: The Yahoo! Cloud Serving Benchmark has been developed to test key-value

data stores [19]. It consists of a single table partitioned on its primary key. In our experi-

ments, we configured the YCSB workload generator to execute 85% read-only transactions

and 15% update transactions, with no scans, deletes or inserts. Since Voter is write-heavy,

we ran YCSB with a read-bias for balance. We used a database with 60 million tuples that

are each 1KB (∼60GB in total). Again we ran no skew, low skew and high skew cases.

The no skew case uses a baseline uniform distribution. The low skew case uses a Zipfian

distribution where two-thirds of the accesses go to one-third of the tuples. The high skew

case uses the same low-skew Zipfian distribution applied to 40% of the accesses, combined

with additional “hotspots”, where the remaining 60% of the accesses go to 40 individual

tuples in partition 0. These definitions are the same as those used in Section 3.1.

TPC-C: This is an industry-standard benchmark for OLTP applications that simulates

the operation of a wholesale parts-supply company [96]. The company’s operation is cen-

tered around a set of warehouses that each stock up to 100,000 different items. Each ware-

house has ten districts, and each district serves 3000 customers. The five transactions (and

their percentage of the total workload) are:

1. Adding a new customer order (45%)

2. Recording payment from a customer (43%)

3. Making a delivery (4%)
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Workloads Voter w/ High Skew Voter w/ Low Skew YCSB w/ High Skew YCSB w/ Low Skew
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Figure 3-8: The impact of tuple-level monitoring on throughput and latency. Dashed lines at 5
seconds indicate the start of tuple-level monitoring.

4. Checking the status of an order (4%)

5. Checking the stock level of a warehouse (4%)

For these experiments, we ran TPC-C on a database with 100 warehouses. We again

tested three different skew settings. For low-skew, we used a Zipfian distribution where

two-thirds of the accesses go to one-third of the warehouses. For the high-skew trials,

we modified the distribution such that 40% of accesses follow the Zipfian distribution de-

scribed above, and the remaining 60% of accesses target three warehouses located initially

on partition 0. According to the TPC-C standard, 90% of the time customers can be served

by their home warehouse, so if the tables are partitioned by their WAREHOUSE id, at most

10% of the transactions will be multi-partitioned [76].

3.5.2 Parameter Sensitivity Analysis

Once E-Store decides that a reconfiguration is needed, it turns on tuple-level monitoring

for a short time window to find the top-k list of hot tuples. We analyzed the E-Store per-
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Figure 3-9: Throughput improvement ratio for YCSB after reconfiguration with Greedy and Greedy
Extended planners with different time windows.

formance degradation in terms of throughput and latency due to this tracking. In each

trial, we first executed the target workload for 60 seconds to let the system warm-up. We

then collected the throughput and latency measurements. After five seconds, we enabled

tuple-level monitoring with the top-k percentage of tracked tuples set to 1%. The results

in Figure 3-8 show that the monitoring reduces throughput by ∼25% for the high skew

workload and ∼33% in the case of low skew. Moreover, the latency increases by about

45% in the case of low skew and about 28% in the case of high skew. This performance

degradation is due to the way tuple accesses are counted in H-Store: accesses to memory

locations in the C++-based execution engine must be mapped to their corresponding tuple

ID, which requires a reverse index lookup with a Java Native Interface call that adds sig-

nificant overhead to each transaction. In future work we plan to investigate ways to reduce

this overhead.

We next analyzed the sensitivity of the monitoring time window W and top-k ratio pa-

rameters. Figure 3-9 shows the throughput improvement ratio (throughput after reconfigu-
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Figure 3-10: Throughput improvement ratio for YCSB after reconfiguration with Greedy and
Greedy Extended planners with different top-k ratios.

ration divided by throughput before reconfiguration) for the Greedy and Greedy Extended

planners with time windows of variable length. The figure shows that the Greedy Extended

algorithm is not sensitive to variation in the length of the time window. In contrast, the

Greedy algorithm shows some sensitivity to the length of the time window since it is more

dependent on the accuracy of the detected hot tuples set. Note that our measure of through-

put after reconfiguration includes the monitoring and reconfiguration periods during which

throughput is reduced, so a longer monitoring interval sometimes results in lower perfor-

mance.

Lastly, we conducted an experiment for the top-k ratio, for k = 0.5%, 1%, and 2%.

Figure 3-10 illustrates that both Greedy and Greedy Extended algorithms are not sensitive

to variation in this parameter. This is probably due to the fact that in our experiments

we had a small number of hot tuples and a large number of cold tuples. Therefore it is

likely that nearly all of the hot tuples were found among the top-k, even for k = 0.5%.

We would probably see more sensitivity with a much larger number of hot tuples (e.g., a
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Planner Low skew High skew
One-tier bin packer > 20 hrs > 20 hrs
Two-tier bin packer > 20 hrs > 20 hrs

Greedy 835 ms 103 ms
Greedy Extended 872 ms 88 ms

First Fit 861 ms 104 ms

Table 3.1: Execution time of all planner algorithms on YCSB.

pathological case in which every tuple in partition 0 is hot) or a much smaller top-k ratio.

These experiments show that E-Store is robust to parameter settings under most normal use

cases, and it is safe to use the default values under different levels of skew. As such, we

use a time window of 10 seconds and top-k ratio of 1% for all the remaining experiments

in this chapter.

3.5.3 One-Tiered vs. Two-Tiered Partitioning

We next compared the efficacy of the plans generated by the one- and two-tiered placement

algorithms for load balancing (with no servers added or removed). For this experiment,

we used the YCSB workload with low and high skew. We implemented both of the bin

packing algorithms from Section 3.4.2 inside of the E-Planner using the GLPK solver1.

Since these algorithms find the optimal placement of tuples, this experiment compares

the ideal scenario for the two different partitioning strategies. The database’s tuples are

initially partitioned uniformly across five nodes in evenly sized chunks. E-Store moves

tuples among these five nodes to correct for the load imbalance. E-Monitor and E-Planner

run as standalone processes on a separate node.

Figures 3-11 and 3-12 show the results of running the two bin packer algorithms (and

others to be discussed in the next section) on the various types of skew to balance load

across the five nodes for the YCSB workload. Note that the time to compute the optimal

plan is exceedingly long for an on-line reconfiguration system like E-Store (see Table 3.1).

Thus for these experiments, we terminated the solver after 20 hours; we did not observe a

noticeable improvement in the quality of the plan beyond this point.

1http://www.gnu.org/s/glpk/
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Figure 3-11: Comparison of all our tuple placement methods with different types of skew on YCSB.
In each case, we started E-Store 30 seconds after the beginning of each plot. Since we are only
concerned with load-balancing performance here, we skipped phase 1 of E-Monitor. The dashed
gray line indicates system performance with no skew.
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Figure 3-12: YCSB throughput and latency from Figure 3-11 averaged from the start of reconfigu-
ration at 30 seconds to the end of the run.
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The reason the optimal plan takes so long to compute is that there are a large number

of inputs to the integer linear program. For the high skew YCSB experiment with the

two-tiered bin packer, there are 2003 rows, 59190 columns, and 118380 non-zeros in the

input matrix representing the binary decision variables and constraints of the problem (see

Section 3.4.2). A recent paper using a similar linear program formulation for allocating

data to servers found that the optimal allocation could only be found with a maximum of

seven “backends” [78]. In this experiment we used thirty partitions, so it is no surprise that

the program did not finish in a reasonable amount of time.

In Figure 3-11 and all subsequent performance vs. time plots, tuple-level monitoring

starts 30-seconds after the beginning of the plot. The 20 hours to compute the placement

plan for the one- and two-tiered bin packer algorithms is not shown in the plots, for obvious

reasons. The horizontal dashed gray line indicates system performance with no skew (a

uniform load distribution). The goal of E-store is to achieve the same level of performance

as the no-skew case even in the presence of skew. The drop in throughput and increase in

latency around 30 seconds is due to the overhead of reconfiguration.

Both optimal bin packer algorithms perform comparably well in the case of low skew,

however the DBMS achieves a lower latency more quickly with the two-tiered approach.

Moreover, the two-tiered approach performs better in the high skew workload since it iden-

tifies hot spots at the individual tuple level and balances load by redistributing those tuples.

The two-tiered approach is able to balance load such that throughput is almost the same as

the no skew workload.

3.5.4 Approximate Placement Evaluation

The main challenge for our approximate placement algorithms is to generate a reconfigu-

ration plan in a reasonable time that allows the DBMS to perform as well as it does using

a plan generated from the optimal algorithms. For these next experiments, we tested our

three approximation algorithms from Section 3.4.3 on YCSB and Voter workloads with

both low and high skew. All tuples are initially partitioned uniformly across five nodes.

Then during each trial, E-Store moves both hot tuples and cold blocks between nodes to

66



correct for load imbalance caused by skew.

Figures 3-11 and 3-12 show the DBMS’s performance using E-Store’s approximate

planners for the two different skew levels for YCSB. These results are consistent with our

results with the Voter workload reported in Figures 3-13 and 3-14.

In the case of high skew, all three approximate planners perform reasonably well, but

Greedy Extended and Greedy stabilize more quickly since they move fewer tuples than

First Fit. After stabilizing, Greedy Extended and First Fit both perform comparably to the

two-tiered bin packer approach. Specifically, Figure 3-11a shows a 4× improvement in

throughput and Figure 3-11b shows a corresponding 10× improvement in latency. Greedy

Extended performs the best overall, since it avoids the spike in latency that First Fit exhibits

as a result of moving a large number of tuples during reconfiguration.

In the case of low skew, Greedy Extended also produces the best reconfiguration plan

since it reaches a stable throughput and latency that is better than the others more quickly.

The plan generated by First Fit achieves good performance too, but it does not stabilize

within the 10 minute window since it moves such a large amount of data. Reconfiguration

of large chunks of data takes time because Squall staggers the movement of data to avoid

overloading the system (recall Section 3.2.1).

In summary, Greedy Extended produces the same performance as the two-tiered bin

packer approach and runs in just a few seconds. We note that because the Greedy algorithm

only considers hot tuples, it does not generate good plans for workloads with low skew.

This provides additional evidence of the importance of considering both hot tuples and

cold blocks.

To gauge the effectiveness of E-Store on applications with few root nodes in the tree

schema, we also ran two experiments with TPC-C. In our TPC-C experiments there are only

100 root tuples and all the other tuples are co-located with these ones. Hence, our Greedy

Extended scheme is overkill and it is sufficient to use the Greedy allocation scheme, which

only looks at hot tuples. In the TPC-C experiments, the 100 warehouses were initially par-

titioned across three machines in evenly sized chunks, with skew settings as described in

Section 3.5.1. As shown in Figure 3-15, E-Store improves both the latency and throughput

of TPC-C under the two different levels of skew. The impact of reconfiguration is larger
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Figure 3-13: Comparison of approximate tuple placement methods with different types of skew on
Voter. The dashed gray line indicates system performance with no skew.
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Figure 3-14: Voter throughput and latency from Figure 3-13, averaged from the start of reconfigu-
ration at 30 seconds to the end of the run.
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Figure 3-15: The Greedy planner with different types of skew on a TPC-C workload. The dashed
gray line indicates system performance with no skew (a uniform load distribution).

for TPC-C than the other benchmarks for a few reasons. First, each warehouse id has a

significant amount of data and tuples associated with it. Therefore, reconfiguring TPC-C

requires more time and resources not only to move all data associated with each ware-

house, but also to extract and load a large number of indexed tuples. Second, as roughly

10% of transactions in TPC-C are distributed, a migrating warehouse can impact transac-

tions on partitions not currently involved in a migration. For these reasons, load-balancing

TPC-C can require longer to complete, but it results in a significant improvement in both

throughput and latency.

3.5.5 Performance after Scaling In/Out

We next measured E-Store’s ability to react to load imbalance by increasing and decreasing

the DBMS’s cluster size. We tested both overloading and underloading the system with the

two different levels of skew to prompt E-Store to scale out or in. We used the YCSB and

Voter workloads again with tuples initially partitioned across five nodes in evenly sized

blocks. We only evaluated plans using the Greedy Extended algorithm, since our previous
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experiments demonstrated its superiority for these workloads.

E-Store can scale out with minimal overhead in order to handle a system that is si-

multaneously skewed and overloaded. Figure 3-16 shows the results of overloading the

system and allowing E-Store to expand from five to six nodes. We also tested E-Store’s

ability to remove nodes when resources are underutilized. Figure 3-17 shows the results of

underloading the system and allowing E-Store to scale in from five to four nodes. These

experiments show that E-Store maintains system performance when scaling in, other than

a brief increase in latency due to migration overhead. In the case of high skew, E-Store ac-

tually improves performance due to load balancing, despite using fewer nodes and, hence,

fewer partitions.

The next chapter focuses more on the problem of scaling in and out, and introduces the

second system in this thesis, P-Store. The experiments will show that E-Store is capable

of reactively scaling out from one to seven machines by adding one machine at a time. For

such large load increases, however, E-Store incurs large latency spikes during each recon-

figuration. The next chapter will show that for large, predictable increases in aggregate

load it is better to scale proactively as P-Store does, by adding one or more machines at a

time in advance of load increases.

3.6 Conclusion

This chapter has described the E-Store system for database elasticity. E-Store manages

skew using a novel two-tiered partitioning scheme. In this scheme, a small number of fre-

quently accessed, “hot” tuples are partitioned explicitly, and the rest of the “cold” tuples are

partitioned in large blocks. E-Store’s end-to-end framework satisfies the requirements for

an ideal elastic system as described in Chapter 1. It provides transactional ACID guarantees

by integrating with an OLTP DBMS such as H-Store. It ensures that no manual interven-

tion is required by continually monitoring the system for imbalances in CPU utilization,

and automatically triggers an elastic reconfiguration if an imbalance is detected. Once

elastic reconfiguration is triggered, a tuple-level monitoring component called E-Monitor

is enabled for a short period of time to identify hot tuples. Next, a planning component
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Figure 3-16: The Greedy Extended planner with different types of skew on Voter and YCSB work-
loads. In these experiments we overloaded the system, causing it to scale out from 5 to 6 nodes.
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Figure 3-17: The Greedy Extended planner with different types of skew on Voter and YCSB work-
loads. In these experiments we underloaded the system, causing it to scale in from 5 to 4 nodes.
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called E-Planner determines how to re-partition the database in order to balance the work-

load, using the two-tiered partitioning scheme. Finally, a live migration component called

Squall physically moves data so that the data layout matches the new plan from E-Planner.

The evaluation shows that the E-Store framework can effectively handle a variety of work-

loads and types of skew, increasing throughput by up to 4× while reducing latency by up

to 10×.
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Chapter 4

P-Store

Many OLTP workloads follow a predictable, diurnal pattern in which load during the day

can be an order of magnitude larger than load at night (recall Figure 1-1). Although a

reactive system such as E-Store will correctly scale in and out for these workloads as the

load varies throughout the day, it is not ideal; by definition, a reactive system is always

one step behind. This delayed response can be a problem if it is necessary to move a large

amount of data during each reconfiguration, since performance may be degraded for an

extended period of time. E-Store quickly corrects load imbalances due to high skew by

moving a small amount of data, but if skew is low and the database is large, corrective

action may take much longer.

This chapter describes P-Store, an elastic system which uses predictive modeling to

proactively scale out in advance of load increases. P-Store determines how many servers

will be required in the future based on predictions of future load, and calculates how much

data will need to move. Based on the amount of data moving, P-Store can determine

how long reconfiguration will take, and therefore how far in advance the reconfiguration

must start in order to complete in time for the predicted load increase. This chapter will

describe in detail how P-Store performs these calculations using a state-of-the-art time

series prediction model, a novel dynamic programming algorithm, and a finely tuned model

of reconfiguration. The chapter concludes with an evaluation of both E-Store and P-Store

on the real database workload of B2W Digital (B2W), the largest online retailer in South

America.
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Figure 4-1: Schematic of a shared nothing, partitioned DBMS with an elasticity subsystem. Special
components of P-Store are shown in the orange boxes.

Figure 4-1 shows P-Store’s major extensions to the model introduced in Chapter 2. As

shown in the orange boxes, P-Store deviates from the basic elasticity model by including a

load predictor to predict future aggregate load on the DBMS given historical data collected

by the Monitor. The Planner feeds these predictions into its proactive elasticity algorithm

to determine when and how to reconfigure the database. At reconfiguration time, a parallel

scheduling algorithm dictates the schedule for data migration.

4.1 Problem Statement

We now define the problem that predictive elasticity seeks to solve. We consider a DBMS

having a latency constraint. The latency constraint specifies a service level agreement for

the system: for example, that 99% of the transactions must complete in under 500 millisec-

onds. The predictive elasticity problem we consider in this chapter entails minimizing the

cost C over T time intervals:
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Figure 4-2: Ideal capacity and actual servers allocated to handle a sinusoidal demand curve

C =
T

∑
t=1

st (4.1)

where st is the number of servers in the database cluster at time t. For convenience, we have

included these and other symbols used throughout the chapter in a table in Appendix A.

Note that this is a different problem than a reactive system such as E-Store seeks to

solve. E-Store is only triggered when there is an existing performance problem or the

system is underutilized. E-Store’s goal is to fix performance issues as quickly as possible

while keeping the system available, so it will likely cause violations to the latency constraint

until reconfiguration is completed. Conversely, P-Store’s goal is to minimize cost while

preventing latency violations from happening at all.

Given a constant workload, it is relatively easy to solve this optimization problem:

choose a constant number of servers st for all t that minimizes C subject to the latency con-

straint; use techniques from E-Store to handle data skew. The problem becomes more inter-

esting with a variable workload, because we must decide when to reconfigure the database

(if at all), and which data to move between servers.

A solution to the predictive elasticity problem must indicate when to initiate each recon-

figuration and the target number of servers for each reconfiguration. In order to minimize

the cost in Equation (4.1) and respect the latency constraint, our system should try to make

the database’s capacity to handle queries as close as possible to the demand while still ex-

ceeding it. In the ideal case, the capacity curve would exactly mirror the demand curve

with a small amount of buffer (see Figure 4-2a). In reality, we can only have an integral

number of servers at any given time, so the actual number of servers allocated must follow

a step function (see Figure 4-2b). This must be taken into consideration when minimizing

77



the gap between the demand function and the capacity curve.

An additional complexity in the predictive elasticity problem is that this step function

is actually an approximation of the capacity of the system. The effective capacity of the

system does not change immediately after a new server is added; it changes gradually as

data from the existing servers is offloaded onto the new server, allowing this new machine

to help serve queries.

The next section describes how P-Store manages this complexity and solves the predic-

tive elasticity problem.

4.2 Algorithm for Predictive Elasticity

This section describes P-Store’s algorithm for predictive elasticity. First, we describe the

preliminary offline analysis that needs to be performed on the DBMS to extract key param-

eters, such as the capacity of each server (Section 4.2.1). Then we introduce the key as-

sumptions and discuss the applicability of the algorithm (Section 4.2.2). Next, we introduce

P-Store’s algorithm to solve the predictive elasticity problem. The algorithm determines a

sequence of reconfigurations that minimizes cost and respects the latency constraint of the

application (Section 4.2.3). Finally, we show how the timing and choice of reconfigurations

depend on the way reconfigurations are scheduled (Section 4.2.4).

The other important component of P-Store, beyond the predictive elasticity algorithm,

is the load prediction component, which we will describe in Section 4.3. Finally, Sec-

tion 4.4 describes how we put all these components together to build P-Store.

4.2.1 Parameters of the Model

Our model has three parameters that must be empirically determined for a given workload

running on a given database configuration:

1. Q: Target average throughput of each server. Used to determine the number of servers

required to serve the predicted load.

2. Q̂: Maximum throughput of each server. If the load exceeds this threshold, the latency

constraint may be violated.
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3. D: Shortest time to move all of the data in the database exactly once with a single

sender-receiver thread pair, such that reconfiguration has no noticeable impact on query

latency. Reconfigurations scheduled by P-Store will actually move a subset of the

database with parallel threads, but D is used as a parameter to calculate how long a

reconfiguration will take so it can be scheduled to complete in time for a predicted load

increase. We assume that D increases linearly with database size.

All of these parameters can be determined through offline system evaluation based on the

latency constraint of the system as defined in Section 4.1.

Q and Q̂ can be empirically determined by running representative transactions from the

given workload on a single server, and steadily increasing the transaction rate over time.

At some point, the system is saturated and the latency constraint is violated. We set Q̂ to

80% of this saturation point to ensure some “slack”. Q should be set to some value below

Q̂ so that normal workload variability does not cause a server’s load to exceed Q̂. We set Q

to 65% of the saturation point in our evaluation.

D is determined by fixing the transaction rate per node at Q̂ and executing a series

of reconfigurations, where in each reconfiguration we increase the rate at which data is

moved. At some point, the reconfiguration starts to impact the performance of the underly-

ing workload and to lead to violations of the latency constraint because there aren’t enough

CPU cycles to manage the overhead of reconfiguration and also execute transactions. D is

set to the reconfiguration time of moving the entire database at the highest rate for which re-

configuration has no noticeable impact on query latency, plus a buffer of 10%. The buffer

is needed because D will actually be used to calculate the time to move subsets of the

database (not the entire thing), and the data distribution may not be perfectly uniform.

4.2.2 Applicability

The proactive reconfiguration algorithm we will describe in Section 4.2.3 relies on several

assumptions, but we believe it is still widely applicable to many OLTP applications. The

key assumptions are:
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• Load predictions are accurate to within a small error. Section 4.3 shows how SPAR,

the default predictive model used by P-Store, works well for the common case of diurnal

workloads. But our algorithm can be combined with any predictive model if it is well

suited for a given workload.

• The workload mix is not rapidly changing. This is a reasonable assumption for most

OLTP workloads, in which the set of transactions and their distribution do not change

very often. When they do change, we can simply measure Q and Q̂ again.

• The database size is not rapidly changing. This is true of many OLTP applications

that keep only active data in the database. Historical data is moved to a separate data

warehouse. Any significant size increase or decrease requires re-discovering D.

• The workload is distributed uniformly across the data partitions. Different tuples

in a database often have different access frequencies, but these differences are smoothed

out when the tuples are randomly grouped into data partitions with a good hash function.

As a result, the load skew among data partitions is generally much lower than the load

skew among tuples. Our evaluation shows that this uniformity assumption is a good

approximation for the workload we considered. (If a workload has a tuple that is so hot

that a single partition cannot handle it alone, then a partitioned database is probably the

wrong choice for that workload.)

• The data is distributed uniformly across the data partitions. Similar to the previous

point, some keys may have more data associated with them than others, but differences

are generally smoothed out at the partition level.

• The workload has few distributed transactions. This is an assumption made by many

partitioned database systems including H-Store, and is required for the system to scale

(almost) linearly.

Although P-Store is implemented in a main memory setting, the ideas should be applicable

to most partitioned OLTP DBMSs with some parameter changes.
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Figure 4-3: Schematic of the goal of the Predictive Elasticity Algorithm.

4.2.3 Predictive Elasticity Algorithm

Our algorithm for proactive reconfiguration must determine when to reconfigure and how

many machines to add or remove each time. This corresponds to finding a series of moves,

where each move consists of adding or removing zero or more machines (“doing nothing”

is a valid move).

Formally speaking, a move is a reconfiguration going from B machines before to A

machines after (adding A−B machines on scale-out, removing B−A machines on scale-in,

or doing nothing if A = B). Each move has a specified starting and ending time. We will

use the variables B and A and the notion of move repeatedly throughout the chapter.

At a high level, our algorithm tries to plan a series of moves spanning a period of time

from the present moment to a specified time in the future. For simplicity, we discretize that

period of time into T time intervals. Each move therefore lasts some positive number of

time intervals (rounded up to the nearest integer). Figure 4-3 shows a schematic of the high

level goal of the algorithm. In this schematic, T = 9 time intervals, and the goal is to find a

series of moves starting at B = 2 machines at t = 0 and ending at A = 4 machines at t = 9,

such that capacity exceeds demand and cost is minimized.
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Algorithm 1: Calculate the best series of moves for a given time series array of pre-
dicted load L and starting number of nodes N0

Function best-moves(L, N0, Q)
Input: Time series array of predicted load L of length T , machines allocated

initially N0, target average transaction rate per node Q
Output: Best series of moves M

// Calculate the maximum number of machines ever needed to serve
// the predicted load
Z ← max(dmax(L)/Qe,N0);

for i← 1 to Z do
// Initialize matrix m to memoize cost and best series of
// moves
m← /0;
if cost(T , i, L, N0, Z, m) 6= ∞ then

t← T ; N← i;
while t > 0 do

Add (t,N) to M;
t← m[t,N].prev_time;
N← m[t,N].prev_nodes;

Reverse M;
return M;

// No feasible solution
return /0;

The algorithm has three functions: best-moves, cost and sub-cost. best-moves is the

top-level function which makes calls to cost. cost and sub-cost recursively call each other.

The cost function starts from the end of the time period with a specified number of servers.

It works backwards with recursive calls to sub-cost to find a series of moves to get from

the initial state to the specified end state with minimal cost (i.e. using the fewest servers on

average). cost checks that there is sufficient capacity for the predicted load at the beginning

and end of every move, and sub-cost checks that there is sufficient capacity during each

move. best-moves is the top-level function which calls cost for all the possible end states,

and chooses the solution with minimal cost that has sufficient capacity throughout. We now

describe each of these functions in more detail.
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Top-Level Algorithm

The best-moves function in Algorithm 1 is the top-level algorithm to find the optimal se-

quence of moves. It receives as input a time series array of predicted load L of length T

(generated by P-Store’s online predictor component, the topic of Section 4.3), as well as N0,

the number of machines currently allocated at time t = 0, and the target average transaction

rate per node Q from Section 4.2.1. The output of the algorithm is an optimal sequence M

of contiguous, non-overlapping moves ordered by starting time.

Algorithm 1 first calculates Z, the number of machines needed to serve the maximum

predicted load in L. After calculating Z, Algorithm 1 iteratively tries to find the optimal

series of moves ending with i machines, starting with i = 1 and incrementing by one each

time, with a maximum of Z. It does so by calling the cost function, which returns the

minimum cost of a feasible sequence of moves ending with i servers at time T (the internals

of the cost function will be discussed in the next section). A sequence of moves is “feasible”

if no server will be overloaded according to the load prediction L. If no feasible sequence

exists, the cost function returns an infinite cost. Otherwise, the function populates a matrix

m of size T ×Z with the optimal moves it has found: m[t,A] contains the last optimal move

that results in having A servers at time t. The element m[t,A] contains the time when the

move starts, the initial number of servers for the move, and the cost during the move, i.e.,

the average number of servers used multiplied by the elapsed time.

As soon as Algorithm 1 finds a series of moves that is feasible (i.e., with finite cost),

it works backwards through the matrix m to find the memoized series of moves. Then it

reverses the list of moves so they correspond to moving forward through time, and it returns

the reversed list. It is not necessary to continue with the loop after a feasible solution

is found, because all later solutions will end up with a larger number of machines and

therefore have a higher cost.

If no feasible solution is found, that means the initial number of machines N0 is too

low, and it is not possible to scale out fast enough to handle the predicted load. This can

happen if, for example, there is a news event causing a flash crowd of customers on the site.

There are a couple of options in this case: (1) move data quickly to meet capacity demands
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by moving larger chunks at a time (which will incur some latency overhead due to data

migration), or (2) continue to move data at the regular rate and suffer some overhead due to

insufficient capacity. By default, P-Store reacts to unexpected load spikes with option (2).

The evaluation in Section 4.6.2 shows the performance of these two strategies.

Finding an Optimal Sequence of Moves

To minimize the cost of the system over time T , we must find a series of moves spanning

time T such that the predicted load never exceeds the effective capacity of the system,

and the sum of the costs of the moves is minimized. In order to plan a move from B to

A machines, we need to determine how long the move will take. The function T (B,A)

expresses this time, which depends on the specific reconfiguration strategy used by the

system. We will discuss how to calculate T (B,A) in Section 4.2.4. We also need to find

out the moves that minimize cost. The cost of a move is computed by the function C(B,A),

which will also be described in Section 4.2.4.

In order to determine the optimal series of moves, we have formulated the problem as

a dynamic program. This problem is a good candidate for dynamic programming because

it carries optimal substructure. The minimum cost of a series of moves ending with A ma-

chines at time t is equal to the minimum cost of a series of moves ending with B machines

at time t − T (B,A), plus the (minimal) cost of the last optimal move, C(B,A).

This formulation is made precise in Algorithms 2 and 3. Algorithm 2 finds the cost

of the optimal series of moves ending at a given time t and number of machines A. The

first line of Algorithm 2 checks the constraints of the problem, in particular that t must

not be negative, and if t = 0 the number of machines must correspond to our initial state,

N0. It also checks that the predicted load at time t does not exceed the capacity of A

machines. We assume that the cost of latency violations (see Section 4.1) is extremely

high, so for simplicity, we define the cost of insufficient capacity to be infinite. Moving

forward through the algorithm, recall that the matrix element m[t,A] stores the last optimal

move found by a call to cost. But its secondary purpose is for “memoization” to prevent

redundant computation. Accordingly, Algorithm 2 checks to see if the optimal set of moves

for this configuration has already been saved in m, and if so, it returns the corresponding
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Algorithm 2: Recursive function to calculate the minimum cost of the system after
time t, ending with A nodes

Function cost(t, A, L, N0, Z, m)
Input: Current time interval t, number of nodes A, time series array of predicted

load L of length T , machines allocated initially N0, maximum number of
machines available to allocate Z, matrix m of size T ×Z to memoize cost
and best series of moves

Output: Minimum cost of the system after time t, ending with A nodes

// penalty for constraint violation or insufficient capacity
if t < 0 or (t = 0 and A 6= N0) or L[t] > cap(A) then return ∞;

if m[t,A] exists then /* check memoized cost */
return m[t,A].cost;

if t = 0 then /* base case */
m[t,A].cost ← A;

else /* recursive step */
B← arg min1≤i≤Z(sub-cost(t, i, A, L, N0, Z, m));

// a move must last at least one time interval
if T (B,A) = 0 then T (B,A)← 1;

m[t,A].cost← sub-cost(t, B, A, L, N0, Z, m);
m[t,A].prev_time← t−T (B,A);
m[t,A].prev_nodes← B;

return m[t,A].cost;

cost. Finally, we come to the recurrence relation. The base case corresponds to t = 0,

in which we simply return the cost of allocating A machines for one time interval (see

Equation (4.1)). The recursive step is as follows: find the cost of the optimal series of

moves ending with B→ A, for all B, and choose the minimum. There is one caveat for the

case when B = A. Since the time and cost of the move are both 0, we need to artificially

make the move last for one time step, with a resulting cost of B. This corresponds to the

“do nothing” move.

Algorithm 3 finds the cost of the optimal series of moves ending at a given time t

with the final move from B to A machines. It first adjusts the time and cost of the move

for the case when B = A, as described previously for Algorithm 2. Next it checks that

the final move from B→ A would not need to start in the past. Finally, it checks that
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Algorithm 3: Recursive function to calculate the minimum cost of the system after
time t, with the last move going from B to A nodes

Function sub-cost(t, B, A, L, N0, Z, m)
Input: Current time interval t, number of machines B before last move, number

of machines A after last move, time series array of predicted load L of
length T , machines allocated initially N0, maximum number of machines
available to allocate Z, matrix m of size T ×Z to memoize cost and best
series of moves

Output: Minimum cost of the system after time t, with the last move going from
B to A nodes

// a move must last at least one time interval
if T (B,A) = 0 then T (B,A)← 1, C(B,A)← B;

start-move← t − T (B,A);
if start-move < 0 then

// this reconfiguration would need to start in the past
return ∞;

for i← 1 to T (B,A) do
load← L[ start-move + i ];
if load > eff-cap(B, A, i/T (B,A)) then

// penalty for insufficient capacity during the move
return ∞;

return cost(start-move, B, L, N0, Z, m) + C(B,A);

for every time interval during the move from B→ A, the predicted load never exceeds the

effective capacity of the system, which is the capacity of the system while a reconfiguration

is ongoing. We will describe how to compute effective capacity in Section 4.2.4. If all of

these checks succeed, it makes a recursive call to Algorithm 2 and returns the cost of the

full series of moves.

4.2.4 Characterizing Data Migrations

In order to find an optimal series of moves, the previous algorithms must evaluate individual

moves to find the optimal choice at different points in time. This section provides the tools

to perform such an evaluation. There are four key questions that must be answered to

determine the best choice for a move:

1. How to schedule data transfers in a move?
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2. How long does a given reconfiguration take?

3. What is the cost of the system during reconfiguration?

4. What is the capacity of the system to execute transactions during reconfiguration?

The answers to the last three questions correspond to finding expressions for three func-

tions used in Section 4.2.3, respectively: T (B,A), C(B,A), and eff-cap. We answer these

questions next.

Executing a Move

In order to model moves it is necessary to understand the way they are executed. An

important requirement is that at the beginning and end of every move, all servers always

have the same amount of data. So initially B machines each have 1/B of the data, and at

the end A machines each have 1/A of the data. Since we consider uniform workloads (see

Section 4.2.2), spreading out the data evenly is best for load balancing.

Another important aspect in a move is the degree of parallelism that we can achieve

during data migrations. We use a single thread at each partition for transferring data during

reconfiguration. This limits the amount of resources used for a move and thus minimizes

its performance disruption. If there are fewer partitions sending data than receiving during

a reconfiguration, each partition that is sending data during a reconfiguration communi-

cates with exactly one partition receiving data at all times. This minimizes the length of the

move by fully utilizing sender partitions, which are fewer than receiver partitions. If there

are fewer receiver partitions the opposite holds: each receiver partition communicates with

exactly one sender partition at all times. Given these design choices, we can now deter-

mine the maximum amount of parallel data transfers that can occur when scaling from B

machines before to A machines after, with P partitions per machine as:

max‖ =


0 if B = A

P∗min(B,A−B) if B < A

P∗min(A,B−A) if B > A

(4.2)

We are now ready to describe how moves are performed. In the following exposition,
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Figure 4-4: Servers allocated during parallel migration, scaling out from 3 servers, assuming one
partition per server. Time in units of D, the time to migrate all data with a single thread.

Phase 1, Step 1
1→ 4, 2→ 5, 3→ 6
1→ 5, 2→ 6, 3→ 4
1→ 6, 2→ 4, 3→ 5

Phase 1, Step 2
1→ 7, 2→ 8, 3→ 9
1→ 8, 2→ 9, 3→ 7
1→ 9, 2→ 7, 3→ 8

Phase 2 1→ 10, 2→ 11, 3→ 12
1→ 11, 2→ 12, 3→ 10

Phase 3
1→ 12, 2→ 13, 3→ 14
1→ 13, 2→ 14, 3→ 11
1→ 14, 2→ 10, 3→ 13

Table 4.1: Schedule of parallel migrations when scaling from 3 machines to 14 machines.

we will consider the specific case of scale out, since the scale in case is symmetrical. For

simplicity and without loss of generality, we will assume one partition per server. Moves

are scheduled such that the system makes full use of the maximum available parallelism

given by Equation (4.2). In addition, moves add new servers as late as possible in order to

minimize the cost while the move is ongoing.

When executing moves, there are three possible strategies that P-Store uses to achieve

the aforementioned goals, exemplified in Figure 4-4. The first strategy is used when B is

greater than or equal to the number of machines that need to be added (see Figure 4-4a).

In this case, all new machines are added at once and receive data in parallel, while sender

machines rotate to send them data.

In the second case, the number of new machines is a perfect multiple of B, so blocks of
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B machines will be allocated at once and simultaneously filled. This allows for maximum

parallel movement while also allowing for just-in-time allocation of machines that are not

needed right away (see Figure 4-4b).

The third case is the most complex because the move is broken into three phases (see

Figure 4-4c). The purpose of the three phases is to keep the sender machines fully utilized

throughout the whole reconfiguration, thus minimizing the length of the move. Table 4.1

reports all the sender-receiver pairs in the example of Figure 4-4c.

During the first phase, the system goes through a sequence of steps where new servers

are added in blocks of B at a time. In each step, each of the original B servers sends data to

every other new server, in a round robin manner.

To see why we need two additional phases, consider again the example of Table 4.1.

After the first two steps of phase one, the system has grown to 9 servers. Executing another

step of phase one would add another block of 3 servers (since B = 3), bringing the system

to 12 servers. With only 2 servers left to be added, it would be impossible to make use of

all 3 sender servers in the original group, since each receiver partition can communicate

only with one sender partition at a time (as described above, this restriction is in place

to minimize performance disruption). Accordingly, three rounds of migration would be

required in order for all three sender servers to send data to each of the two receivers. To

avoid this problem, the migration algorithm activates phase two before the next block of

B servers is added. During phase two, the B sender servers send data to B new receiver

servers, but they are filled only partly (see Table 4.1). By the end of phase two, each

sender server has communicated with only two of the three new receiver servers. Finally,

servers 13 and 14 are added during phase three. Because the last batch of B servers were

not completely filled in phase two, all the B sender servers can send data in parallel. This

enables the full reconfiguration to complete in the 11 rounds shown in Table 4.1, while

minimizing overhead on each partition throughout. Without the three distinct phases, the

reconfiguration shown would require at least 12 rounds.
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Time for a Move

After detailing how a move is scheduled, we are ready to calculate the time T (B,A) that

it takes to move from B to A servers. Recall that D is the time it takes to move the entire

database using a single thread, as defined in Section 4.2.1. We have discussed previously

that moves are scheduled to always make full use of the maximum parallelism given by

Equation (4.2). Therefore, the entire database can be moved in time D/max‖. If we con-

sider the actual fraction of the database that must be moved to scale from B machines to A

machines, we obtain that the reconfiguration time is:

T (B,A) =


0 if B = A

D
max‖
∗ (1− B

A) if B < A

D
max‖
∗ (1− A

B) if B > A

(4.3)

Cost of a Move

As defined in Equation (4.1), cost depends on the number of machines allocated over time.

Therefore, we define the cost of a reconfiguration as follows:

C(B,A) = T (B,A)∗avg-mach-alloc(B,A) (4.4)

where T (B,A) is the time for reconfiguration from Equation (4.3) and avg-mach-alloc(B,A)

is the average number of machines allocated during migration, as defined in Algorithm 4.

Algorithm 4 takes into consideration that machine allocation is symmetric for scale-in

and scale-out. The important distinction between the starting and ending cluster sizes,

therefore, is not before/after but larger/smaller. And the delta between the larger and

smaller clusters is equal to the number of machines receiving data from the smaller clus-

ter when scaling out, or the number of machines sending data to the smaller cluster when

scaling in. These values are assigned to l, s and ∆ in the first few lines of Algorithm 4. The

next line assigns to r the remainder of dividing ∆ by s, which will be important later in the

algorithm.
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Algorithm 4: Calculate the average number of machines that must be allocated during
the move from B to A machines with parallel migration

Function avg-mach-alloc(B, A)
Input: Machines before move B, machines after move A
Output: Average number of machines allocated during the move

// Machine allocation symmetric for scale-in and scale-out.
// Important distinction is not before/after but larger/smaller.
l← max(B,A) ; // larger cluster
s← min(B,A) ; // smaller cluster
∆← l− s ; // delta
r← ∆%s ; // remainder

// ================================================================
// Case 1: All machines added or removed at once
// ================================================================
if s≥ ∆ then return l;

// ================================================================
// Case 2: ∆ is multiple of smaller cluster
// ================================================================
if r = 0 then return (2s+ l)/2;

// ================================================================
// Case 3: Machines added or removed in 3 phases
// ================================================================

// Phase 1: N1 sets of s machines added and filled completely
N1← b∆/sc−1 ; // number of steps in phase1
T1← s/∆ ; // time per step in phase1
M1← (s+ l− r)/2 ; // average machines in phase1
phase1← N1 ∗T1 ∗M1;

// Phase 2: s machines added and filled r/s fraction of the way
T2← r /∆ ; // time for phase2
M2← l− r ; // machines in phase2
phase2← T2 ∗M2;

// Phase 3: r machines added and remaining machines filled
// completely
T3← s/∆ ; // time for phase3
M3← l ; // machines in phase3
phase3← T3 ∗M3;

return phase1 + phase2 + phase3
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Given these definitions, the algorithm considers the three cases discussed in Section 4.2.4.

In the first case, the size of the smaller cluster is greater than or equal to ∆, which means

that all new machines must be allocated (or de-allocated) at once in order to allow for max-

imum parallel movement. In the second case, ∆ is a perfect multiple of the smaller cluster,

so blocks of s machines will be allocated (or deallocated) at once and simultaneously filled

(or emptied). Thus, the average number of machines allocated is (2s+ l)/2. In the third

case we have three phases, and the number of servers added in each phase is shown in

Algorithm 4.

Effective Capacity of System During Reconfiguration

Finally we calculate the effective capacity of the system during a reconfiguration. The total

capacity of N machines in which data is evenly distributed is defined as follows:

cap(N) = Q∗N (4.5)

During a reconfiguration, however, data is not evenly distributed. Assume that a node

n keeps a fraction fn of the total database, where 0 ≤ fn ≤ 1. Since we consider uniform

workloads, node n receives a fraction fn of the load, which is cap(N)∗ fn when the system

is running at full capacity. The total load on the system cannot be so large that the maximum

capacity Q̂ of a server is exceeded. Therefore, to account for workload variability, we have

that Q≥ cap(N)∗ fn and:

cap(N)≤ Q/ fn ∀n ∈ {n1 . . .nN} (4.6)

This implies that the maximum capacity of the system is determined by the server having

the largest fn, i.e., the largest fraction of the database. We can thus define the effective

capacity of the system after a fraction f of the data is moved during the transition from B

machines to A machines as:
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eff-cap(B,A, f ) =


cap(B) if B = A

cap(1/( 1
B − f ∗ ( 1

B −
1
A))) if B < A

cap(1/( 1
B + f ∗ ( 1

A −
1
B))) if B > A

(4.7)

Let us consider each case individually. The first case is self-explanatory; no data is moving.

The second case applies to scaling out, where B nodes send data to (A−B) new machines.

Throughout reconfiguration, capacity is determined by the original B machines, which each

initially have 1/B of the data. After reconfiguration, they will have 1/A of the data, so as

fraction f of the data is moved to the new machines, each of the B machines now has

(1/B− f ∗ (1/B− 1/A)) of the data. The inverse of this expression corresponds to the

number of machines in an evenly-loaded cluster with equivalent capacity to the current

system, and Equation (4.5) converts that machine count to capacity. The third case in

Equation (4.7) applies to scaling in and follows a similar logic to the second case. Here,

(B−A) of the original machines send data to the remaining A machines, each of which start

with 1/B of the data. After reconfiguration they will have 1/A of the data, so as fraction f

of the data is moved, each of the A machines now has (1/B+ f ∗ (1/A−1/B)) of the data.

Passing the inverse of this expression to Equation (4.5) returns the capacity.

This equation assumes that the workload is uniformly distributed across the range of

keys. It is incorrect in the case of high skew, because a machine may be overloaded even

though it contains less data than other machines. In Section 4.6.1, we show that although

the B2W workload is skewed, this skew can be easily masked with a good hash function.

Modifying Equation (4.7) for workloads with high skew is left as future work.

To illustrate why it is important to take the effective capacity into account when plan-

ning reconfigurations, Figure 4-5 shows the effective capacity at each point during the

different migrations presented at the beginning of this section. For a small change such as

Figure 4-5a, the effective capacity is close to the actual capacity, and it may not make a

difference for planning purposes. But for a large reconfiguration such as Figure 4-5c, the

effective capacity is significantly below the actual number of machines allocated. This fact

must be taken into account when planning reconfigurations to avoid underprovisioning.
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Figure 4-5: Servers allocated and effective capacity during parallel migration, scaling out from 3
servers, assuming one partition per server. Time in units of D, the time to migrate all data with a
single thread.

Algorithm 3 performs this function in our Predictive Elasticity Algorithm.

4.3 Load Time-Series Prediction

The decision about how and when to reconfigure requires an accurate prediction of the ag-

gregate workload. In this section, we discuss the time-series techniques used for accurately

modeling and predicting the aggregate load on the system. P-Store continuously monitors

the load it needs to serve. As shown in Chapter 1, real-world online retail traffic exhibits a

strong diurnal pattern (recall the B2W load depicted in Figure 1-1), which is attributed to

the customers’ daily habits and natural tendencies to shop during specific times of the day.

However, we also find that there is variability on a day-to-day basis due to many factors

from seasonality of demand to occasional advertising campaigns.

Capturing these short- and long-term patterns when modeling the load is critical for

making accurate predictions. And as previously discussed, database reconfiguration usu-

ally requires several minutes, therefore prediction of load changes must be done at that

scale. To this end, we exploit auto-regressive (AR) prediction models which are capable of

capturing time-dependent correlations in the data. More precisely, we use Sparse Periodic

Auto-Regression (SPAR) [17]. Informally, SPAR strives to infer the dependence of the load

on long-term periodic patterns as well as short-term transient effects. Therefore, SPAR
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Figure 4-6: Evaluation of SPAR’s predictions for B2W.

provides a good fit for the database workloads that P-Store is designed to serve, since the

AR component captures the observed auto-correlations in the load intensity over time (e.g.

due to diurnal trends), and the sparse-periodic component captures longer-term seasonal

periods (e.g. due to weekly or monthly trends).

We now discuss fitting SPAR to the load data. We measure the load at time slot t by

the number of requests per slot. Here each slot is 1 minute, so T = 1440 slots per day. In

SPAR we model load at time t + τ based on the periodic signal at that time of the day and

the offset between the load in the recent past and the expected load:

y(t + τ) =
n

∑
k=1

aky(t + τ− kT )+
m

∑
j=1

b j∆y(t− j) (4.8)

where n is the number of previous periods to consider, m is the number of recent load

measurements to consider, ak and b j are parameters of the model, 0≤ τ < T is a forecasting

period (how long in the future we plan to predict) and

∆y(t− j) = y(t− j)− 1
n

n

∑
k=1

y(t− j− kT )

measures the offset of the load in the recent past to the expected load at that time of the

day. Parameters ak and b j are inferred using linear least squares over the training dataset

used to fit the model.
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SPAR predictions for B2W: We now analyze the utility of using SPAR to model and

predict the aggregate load in B2W. B2W provided us with several months’ worth of load

traces (Section 4.5 provides more details about the data). We used the first 4 weeks of the

data to train the SPAR model. After examining the quality of our predictor under different

values for the number of previous periods n and the number of recent load measurements

m, we find that setting n = 7 and m = 30 is a good fit for our dataset. This means we use

the previous week for the periodic prediction, and the offset from the previous 30 minutes

to indicate of how different current load is from the ‘average’ load at that time of the day.

To demonstrate the accuracy of our SPAR predictor, in Figure 4-6a we depict the actual

B2W load and the SPAR predictions for a 24-hour period (outside of the training set),

when using a forecasting window of τ = 60 minutes. We also report the average prediction

accuracy as a function of forecasting period τ in Figure 4-6b; the mean relative error (MRE)

measures the deviation of the predictions from the actual data. We find that the prediction

accuracy decays gracefully with the granularity of the forecasting period τ .

SPAR predictions for less-periodic loads: To better understand if SPAR’s high-quality

predictions for B2W’s periodic load can be obtained for other Internet workloads with less

periodic patterns and varying degrees of predictability, we examined traces from Wikipedia

for their per-hour page view statistics [34]. We focus on the page requests made to the two

most popular editions, the English-language and German-language Wikipedias [98].

Similar to our analysis for B2W, we trained SPAR using 4 weeks of Wikipedia traces

from July, 2016 (separately for each language trace), then evaluated SPAR’s predictions

using data from August, 2016. The results in Figures 4-7a and 4-7b show that SPAR is able

to accurately model and predict the hourly Wikipedia load for both languages. Even for the

less predictable German-language load, the error remains under 10% for predicting up to

two hours into the future, and within 13% only for forecast windows as high as 6 hours.

Discussion: What’s a good forecast window? Note that the forecast window τ only

needs to be large enough so that the first move returned by the dynamic programming al-

gorithm described in Section 4.2 is correct; by the time the first reconfiguration completes,

the predictions may have changed, so the dynamic program must be re-run anyway. But

in order for the first move to be correct, τ must be at least 2D/P, the maximum length of
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Figure 4-7: Evaluation of SPAR’s predictions for another workload with different periodicity and
predictability degrees: Wikipedia’s per-hour page requests.

time needed for two reconfigurations with parallel migration. This allows the algorithm to

ensure that the first move will not leave the system in an underprovisioned state for subse-

quent moves (e.g., if it plans a “scale in” move, it knows there will be time to scale back

out in advance of any predicted load spikes). This typically means a value of τ in the range

of tens of minutes. Figures 4-6 and 4-7 show that SPAR is sufficiently accurate for such

values of τ , with error rates of under 10%.

We have explored other time-series models, such as a simple AR model and an auto-

regressive moving-average (ARMA) model. Overall, we find that AR-based models work

well, but that SPAR usually produces the most accurate predictions under different work-

loads (as it captures different trends in the data). Figure 4-8 shows that SPAR’s prediction

error on the B2W workload is lower than that of both the AR and ARMA models, espe-

cially as the forecast window increases. Based on these results, the rest of this chapter

focuses on the rich dataset from B2W as a large-scale, real-world representative workload

for online OLTP applications, and on SPAR as a load prediction model.
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Figure 4-8: Comparison of SPAR prediction accuracy with other auto-regressive models on the
B2W workload

4.4 Putting It All Together

As described in Chapter 2, P-Store’s techniques are general and can be applied to any

partitioned DBMS, but our first P-Store implementation is based on H-Store and its live

migration system, Squall.

The P-Store system combines all the previous techniques for time series prediction,

determination of when to scale in or out, and how to schedule the migrations. We have

created a “Predictive Controller” which handles online monitoring of the system and calls

to the components that implement each of these techniques. For convenience, we call

these components the Predictor, the Planner and the Scheduler, respectively. To obtain

measurements of the aggregate load in H-Store, the Predictive Controller calls H-Store’s

system stored procedures.

P-Store has an active learning system. If training data exists, parameters ak and b j

in Equation (4.8) can be learned offline. Otherwise, P-Store constantly monitors the sys-

tem over time and can actively learn the parameter values. The Predictor component uses

Equation (4.8) and the fitted parameter values to make online predictions based on current

measurements of H-Store’s aggregate load.

As soon as P-Store starts running, the Predictive Controller begins monitoring the sys-

tem and measuring the load. When enough measurements are available, it makes a call to
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the Predictor, which returns a time series of future load predictions. The Controller then

passes this data to the Planner, which calculates the best series of moves.

Given the best series of moves from the Planner, the Controller throws away all but the

first (similar to the idea of receding horizon control [65]). It passes this first move along

with the current partition plan to the Scheduler, which generates a new partition plan in

which all source machines send an equal amount of data to all destination machines, as

described in Section 4.2.4. This partition plan is then passed to the external Squall system

to perform the migration.

If the Planner calls for a scale-in move, the Controller waits for three cycles of predic-

tions from the Predictor to confirm the scale-in. If after three cycles the Planner still calls

for a scale-in, then the move is executed. This heuristic prevents unnecessary reconfigura-

tions that could cause latency spikes.

After a move is complete, the Controller repeats the cycle of prediction, planning, and

migration. If at any time the Planner finds that there is no feasible solution to manage the

load without disruption, the Scheduler is called to create a partition plan to scale out to the

number of machines needed to handle the predicted spike, and Squall is called in one of

two ways as described at the end of Section 4.2.3: move data faster and suffer some latency

during migration, or move at the regular rate and wait longer to reach the desired capacity.

4.5 B2W Digital Workload

B2W has provided a large, rich dataset that includes logs of every transaction on their

shopping cart, checkout and stock inventory databases over a period of several months,

as well as the historical CPU utilization and I/O operations on the database servers. The

transaction logs include the timestamp and the type of each transaction (e.g., GET, PUT,

DELETE), as well as unique identifiers for the shopping carts, checkouts and stock items

that were accessed or modified. Since there is some important information not available

in the logs (e.g., the contents of each shopping cart), B2W has also provided a dump of

all of the shopping carts, checkouts, and stock data from the last year. All data for this

project has been anonymized by B2W to eliminate any sensitive customer information,
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sku	 descrip+on	 available	 reserved	 purchased	

123456	 Harry	Po.er	and	the…	 97	 2	 53	

111111	 Maytag	front	loadin…	 43	 0	 13	
…	 …	 …	 …	 …	

cart_id	 cust_id	 +mestamp	

abcdef	 000001	 Aug	2,	2016	10:05:34	

ababab	 000002	 Aug	5,	2016	11:12:13	
…	 …	 …	

cart_id	 sku	 price	

abcdef	 123456	 $10.99	

abcdef	 111111	 $599.99	
…	 …	 …	

cart_id	 checkout_id	 credit_card_no	 expira+on	

abcdef	 abcdefghi	 1111111111111111	 11/18	

bcbcbc	 bcbcbcdcdc	 2222222222222222	 07/17	
…	 …	 …	 …	

Stock	Inventory	

Shopping	Cart	 Cart	Lines	

Checkout	

Figure 4-9: Simplified database for the B2W H-Store benchmark

but otherwise it is identical to the data in production. Joining the unique identifiers from

the log data with the keys in the database dump thus allows us to infer almost everything

about each transaction, meaning we can effectively replay the transactions starting from

any point in the logs. This allows us to run H-Store with the same workload running in

B2W’s production shopping cart, checkout and stock databases.

To model B2W’s workload in H-Store, we have implemented a benchmark driven by

their traces. This benchmark includes nearly all the database operations required to run

an online retail store, from adding and removing items in customers’ shopping carts, to

collecting payment data for checkout. A simplified database is shown in Figure 4-9, and

a list of the transactions is shown in Table 4.2. When a customer tries to add an item to

their cart through the website, GetStockQuantity is called to see if the item is available,

and if so, AddLineToCart is called to update the shopping cart. At checkout time, the

system attempts to reserve each item in the cart, calling ReserveStock on each item. If a

given item is no longer available, it is removed from the shopping cart and the customer is

notified. The customer has a chance to review the final shopping cart before they agree to

the purchase.
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Transaction Description
AddLineToCart Add a new item to the shopping cart,

create the cart if it doesn’t exist yet
DeleteLineFromCart Remove an item from the cart
GetCart Retrieve items currently in the cart
DeleteCart Delete the shopping cart
GetStock Retrieve the stock inventory information
GetStockQuantity Determine availability of an item
ReserveStock Update the stock inventory to mark

an item as reserved
PurchaseStock Update the stock inventory to mark

an item as purchased
CancelStockReservation Cancel the stock reservation to make

an item available again
CreateStockTransaction Create a stock transaction indicating

that an item in the cart has been reserved
ReserveCart Mark the items in the shopping cart as reserved
GetStockTransaction Retrieve the stock transaction
UpdateStockTransaction Change the status of a stock transaction

to mark it as purchased or cancelled
CreateCheckout Start the checkout process
CreateCheckoutPayment Add payment information to the checkout
AddLineToCheckout Add a new item to the checkout object
DeleteLineFromCheckout Remove an item from the checkout object
GetCheckout Retrieve the checkout object
DeleteCheckout Delete the checkout object

Table 4.2: Operations from the B2W H-Store benchmark

Although the data provided by B2W is proprietary, the H-Store benchmark containing

the full database schema and transaction logic is not. The benchmark is open-source and

available on GitHub for the community to use [91].

Using B2W’s Workload to Evaluate P-Store: To evaluate P-Store, we ran the B2W

benchmark described above. The cart and checkout databases have a predictable access

pattern (recall Figure 1-1) due to the daily habits of B2W’s customers. The stock database

is more likely to be accessed by internal B2W processes, however, causing a spiky, unpre-

dictable access pattern, which is possibly related to the deliveries that replenish the stock.

There may be predictive models that would be appropriate for this spiky workload, but
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we leave such a study for future work. Therefore, our evaluation considers only data and

transactions from the cart and checkout databases. This is consistent with the deployment

used in production at B2W: the stock data is stored in a different database, on a different

cluster of machines from the cart and checkout data. The business logic involving multiple

data sources happens at the application layer, not at the database layer.

When replaying the original cart and checkout transactions, we make a couple of modi-

fications to enable us to experimentally demonstrate our proactive elasticity algorithms with

H-Store and Squall. First, we increase the transaction rate by 10× so that we can experi-

ence the workload variability of a full day in just a few hours. This allows us to demonstrate

the performance of P-Store over several days within a reasonable experimental timeframe.

Second, we add a small delay in each transaction to artificially slow down execution. We

do this because H-Store is much faster than the DBMS used by B2W and can easily handle

even the accelerated workload with a single server. Slowing down execution allows us to

demonstrate the effectiveness of P-Store by requiring multiple servers.

We train our prediction model using 4-weeks’ worth of historical B2W data, stored

in an analytic database system. The SPAR parameters ak and b j from Equation (4.8) are

calculated offline using the training data and can be easily updated online periodically, even

though we did not implement these periodic updates. The remaining parameters in SPAR

are updated online based on current load information extracted from H-Store.

4.6 Evaluation

To evaluate P-Store we run the B2W workload described in the previous section. All of our

experiments are conducted on an H-Store database with 6 partitions per node deployed on

a 10-node cluster running Ubuntu 12.04 (64-bit Linux 3.2.0), connected by a 10 Gb switch.

Each machine has four 8-core Intel Xeon E7-4830 processors running at 2.13 GHz with

256 GB of DRAM.
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Figure 4-10: Increasing throughput on a single machine. Gray line indicates maximum throughput
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4.6.1 Parameter Discovery

Before running P-Store, we need to understand certain properties of the B2W workload and

its performance on our system. In particular, we must confirm that the workload is close to

uniform, and we must determine the target and maximum throughput per machine Q and

Q̂ and the time to migrate the whole database D as described in Section 4.2.1.

In the B2W workload, each shopping cart and checkout key is randomly generated,

so there is minimal skew in transactions accessing the cart and checkout databases. Fur-

thermore, after hashing the keys to partitions with MurmurHash 2.0 [45], we found that

the access pattern and data distribution are both relatively uniform. In particular, with 30

partitions over a 24-hour period, the most-accessed partition receives only 10.15% more

accesses than average, and the standard deviation of accesses across all partitions is 2.62%

of the average. The partition with the most data has only 0.185% more data than average,

and the standard deviation is 0.099% of the average. This level of skew is not even close to

the skew described in [92, 83], in which 40% or more of the transactions could be routed

to a single partition. Therefore, the assumption that we have a uniform database workload

is reasonable.

To discover the values for Q and Q̂, we run a rate-limited version of the workload with

a single server and identify the transaction rate at which the single server can no longer

keep up. As shown in Figure 4-10, for the B2W workload running on an H-Store cluster
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Figure 4-11: 50th and 99th percentile latencies when reconfiguring with different chunk sizes com-
pared to a static system. Total throughput varies so per-machine throughput is fixed at Q̂.

with 6 partitions per server, this happens at 438 transactions per second. As described in

Section 4.2.1, we set Q̂ to 80% of the empirical maximum, or 350 transactions per second.

Q is set to 65% of the maximum, or 285 transactions per second.

To discover D, we run the following set of experiments: With an underlying workload

of Q̂ transactions per second, we start with the data on a single machine and move half of

the data to a second machine, tracking the latency throughout migration. We perform this

same experiment several times, varying the migration chunk size each time. We also vary

the overall transaction rate to ensure that the rate on the source machine stays fixed at Q̂,

even as data is moved. As shown in Figure 4-11, the 99th percentile latency when moving

1000 kB chunks is slightly larger than that of a static system with no reconfiguration, but

still within the bounds of most acceptable latency thresholds. Moving larger chunks causes

the reconfiguration to finish faster, but creates a higher risk for latency spikes. In the 1000

kB experiment we moved one half of the entire 1106 MB database of active shopping carts

and checkouts in 2112 seconds. Therefore, we set D to 4646 seconds (including the 10%

buffer), or 77 minutes. We define the migration rate R as the rate at which data is migrated

in this setting, which is 244 kB per second1. Since P-Store actually performs parallel mi-

1A data movement rate of 244 kB per second may seem low given a setting of 1000 kB chunks, but the
reported chunk size is actually an upper bound; the actual size of most chunks is much smaller. Squall also
spaces the chunks apart by at least 100 ms on average.
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gration and a single migration never moves the entire database, most reconfigurations last

between 2 and 7 minutes. The reason Squall takes so long to reconfigure the database is that

in order to conform to H-Store’s single-threaded execution model and ensure consistency,

it must lock both the source and destination partitions and effectively perform a distributed

transaction for every data movement (see Section 2.3). Distributed transactions are expen-

sive in H-Store, so Squall spaces them apart in order to minimize impact on transaction

latency.2

4.6.2 Comparison of Elasticity Approaches

In this section, we compare the performance and resource utilization of several different

elasticity approaches. Unless otherwise noted, all of the experiments are run with the B2W

benchmark replaying transactions from a randomly chosen 3-day period, which happened

to fall in July 2016. With a 10× speedup, this corresponds to 7.2 hours of benchmark time

per experiment. For visual clarity, all of the charts show throughput and latency averaged

over a 10 second window. To account for load prediction error, we inflate all predictions

by 15%.

As a baseline for comparison, we run the benchmark on H-Store with no elasticity. If

the number of servers used is sufficient to manage the peak load comfortably, we would

expect few high latency transactions but many idle servers during periods of low activity.

Figure 4-12a shows this scenario when running the B2W benchmark on a 10-node cluster.

Throughput follows the familiar sinusoidal pattern, and average latency remains low, with

only two small spikes during the first and third days. Presumably these spikes are caused

by transient workload skew (e.g., one partition receives a large percentage of the requests

over a short period of time). The red line at the top of the chart shows that with 10 machines

allocated and a capacity per machine of Q̂ = 350 transactions per second, there is plenty

of capacity for the offered load. If we reduce the number of servers to 4, the number of

idle machines drops but the number of high latency transactions increases (Figure 4-12b).

2This rate of migration is acceptable for the B2W workload since the database is relatively small. It may
not be acceptable for a much larger database, however. Squall’s performance is commensurate with its status
as an academic prototype; finely tuned commercial systems such as VoltDB [101] are much faster, and would
likely decrease P-Store’s total migration time.
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(a) Throughput and latency over three days with a statically provisioned cluster with 10 machines

0

1,000

2,000

3,000

0
2
4
6
8
10

T
hr

ou
gh

pu
t

(t
xn

s/
s)

M
achines

A
llocated

0
50

100
150
200

0 10000 20000
Time (s)

A
ve

ra
ge

La
te

nc
y 

(m
s)

(b) Throughput and latency over three days with a statically provisioned cluster with 4 machines
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(c) Performance of a reactive system with the B2W workload

Figure 4-12: Comparison of elasticity approaches – static and reactive provisioning
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(a) Performance of P-Store with the SPAR predictive model
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(b) Performance of P-Store with an oracle predictor

Figure 4-13: Comparison of elasticity approaches – predictive provisioning
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These latency spikes are unacceptable for companies that require fast response times, so the

static approach with provisioning for peak load is the one used by most OLTP databases,

including B2W’s current production system. Although B2W uses fewer than 10 servers for

their peak workload today, they anticipate needing more as their business grows, making

peak provisioning more and more expensive.

We also run the benchmark with the reactive elasticity technique used by E-Store [92].

We choose E-Store over Clay [83] because in the B2W benchmark each transaction ac-

cesses only one partitioning key. Figure 4-12c shows the performance of this technique

on the B2W workload. Light green sections of the throughput and latency curves indi-

cate that a reconfiguration is in progress, while black sections indicate a period of no data

movement. The red line shows the number of machines allocated at each point in time

and the corresponding machine capacity (effective capacity is not shown, but it is close

to the full machine capacity). Clearly, this technique reacts to the daily variations in load

and correctly reconfigures the system as needed to meet demand. However, the system has

high latency at the start of each load increase due to the overhead of reconfiguration in the

presence of increasing load.

Finally, we show that P-Store comes closest to solving the problem outlined in Sec-

tion 4.1. Figure 4-13a shows P-Store with the SPAR predictor (“P-Store SPAR”) running

on the B2W benchmark. We see many fewer latency spikes than the reactive experiment

because P-Store reconfigures the system in advance of load increases and provides more

headroom for transient load variations and skew (notice that the red line indicating machine

capacity is always above the throughput curve). For comparison, Figure 4-13b shows the

performance of the P-Store system when using an oracle predictor that has perfect knowl-

edge of the future. P-Store SPAR actually causes fewer latency spikes than P-Store with

the oracle predictor because P-Store SPAR is more conservative and less likely to scale in

when there is a slight dip in throughput. As a result, P-Store SPAR also uses slightly more

machines on average.

Figure 4-14 compares the five different elasticity approaches studied in terms of CDFs

of the top 1% of 50th, 95th and 99th percentile latencies measured each second during

the experiments shown in Figures 4-12 and 4-13. Curves that are higher and far to the
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Figure 4-14: Comparison of elasticity approaches in terms of the top 1% of 50th, 95th and 99th
percentile latencies.

# Latency Violations Average
Elasticity 50th 95th 99th Machines
Approach %ile %ile %ile Allocated
Static allocation with 10 servers 0 13 25 10
Static allocation with 4 servers 0 157 249 4
Reactive provisioning 35 220 327 4.02
P-Store with SPAR predictor 0 37 92 5.05
P-Store with oracle predictor 2 63 121 4.89

Table 4.3: Comparison of elasticity approaches in terms of number of SLA violations for 50th, 95th
and 99th percentile latency, and average machines allocated. SLA violations are counted as total
number of seconds with latency above 500 ms.

left are better, because that indicates that latency is generally low. The reactive approach

clearly performs the worst in all three plots. Although static allocation with four servers

outperforms both P-Store approaches for 50th percentile latency, it is much worse for 95th

and 99th percentile latencies. Static allocation with 10 servers performs best in all three

plots, but the P-Store approaches are not far behind.

Table 4.3 reports the number of SLA violations as well as the average number of ma-

chines allocated during the experiments shown in Figures 4-12 and 4-13. We define SLA

violations as the total number of seconds during the experiment in which the 50th, 95th, or

99th percentile latency exceeds 500 ms, since that is the maximum delay that is unnotice-

able by users [6]. Static allocation with 10 machines unsurprisingly has the fewest latency

violations, but it also has at least 2×more machines allocated than all the other approaches.
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Figure 4-15: Comparison of two different rates of data movement when reacting to an unexpected
load spike, under P-Store SPAR.

Static allocation with 4 machines has the fewest number of machines allocated, but it has

many SLA violations for the tail latencies. Reactive provisioning performs even worse,

with 13× more 99th percentile latency violations than static allocation for peak load. Both

versions of P-Store perform well, using about 50% of the resources of peak provisioning,

while causing about one third of the latency violations of reactive provisioning. As dis-

cussed previously, the SPAR variant of P-Store is more conservative than the one using

the oracle predictor and thus leads to fewer latency violations. P-Store has more latency

violations than the peak-provisioned system because there is less capacity to handle tran-

sient workload skew, particularly when it coincides with data movement. This will be less

of a problem when running at normal speed (as opposed to 10× speed), because the sys-

tem will need to reconfigure less frequently. Users can also configure P-Store to be more

conservative in terms of the target throughput per server Q.

The predictive algorithms alone are sufficient and the performance of P-Store matches

the version with the oracle predictor as long as there are no unexpected load spikes. When

the predictions are incorrect, however, P-Store must do one of the two options described

in Section 4.2: continue scaling out at rate R, or increase the rate of migration to scale out

as fast as possible. Figure 4-15 compares these two different approaches in the presence

of a large unexpected spike during a day in September 2016. When scaling at rate R,

the numbers of latency violations for the 50th, 95th, and 99th percentile are 16, 101, and
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143, respectively. When scaling at rate R× 8, however, the numbers are 22, 44, and 51.

Although the average latency at the start of the load spike is higher when scaling at rate

R×8, the total number of seconds with latency violations is lower.

4.7 Conclusion

This chapter has presented P-Store, an elastic database system that uses predictive mod-

eling for proactive reconfiguration. It forecasts future load on the database using Sparse

Periodic Auto-Regression (SPAR), and determines the minimum number of servers needed

at each point in the future in order to serve the predicted load. Based on this prediction,

P-Store uses a dynamic programming algorithm to plan a series of reconfigurations so that

the average number of servers is minimized and capacity always exceeds the predicted load.

A live migration system such as Squall then executes each reconfiguration using P-Store’s

data migration scheduling algorithm, which maximizes efficiency while ensuring that no

servers are overloaded. The evaluation shows that on a real online retail workload, P-Store

uses 50% fewer servers than static provisioning for peak demand. Although P-Store causes

more latency violations than the peak provisioned system, it is a significant improvement

over prior elastic approaches, causing 72% fewer latency violations than a reactive elastic-

ity system.
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Chapter 5

Related Work

There are three major bodies of work that are relevant to the two elasticity systems pre-

sented here. First of all, there are many other DBMSs that support elastic scaling, however

none successfully use the two-tiered approach for managing skew proposed by E-Store,

and none take advantage of predictive modeling as P-Store does. Second, there is some

work on predictive modeling for scalable systems in general, but not specifically applied to

an OLTP DBMS. Finally, there is a large body of work on live migration of DBMSs. This

thesis uses that work and adds to it by proposing a model to characterize the elapsed time

and cost of a reconfiguration, as well as the capacity of the DBMS during reconfiguration.

5.1 Elasticity Techniques

This thesis follows on several previous papers on database elasticity. The E-Store sys-

tem described here was initially published as a conference paper [92]. As described in

Chapter 2, E-Store does not consider distributed transactions, so it is designed for work-

loads in which most transactions access a single partitioning key (with a “tree schema”).

Clay [83] generalizes the E-Store approach to multi-key transactions (non-tree schemas).

Rather than moving individual hot tuples, Clay moves “clumps” of hot and cold tuples that

are frequently accessed together in order to balance the workload without creating new

distributed transactions. Cumulus [31] is another project that, similar to Clay, attempts

to minimize distributed transactions through adaptive repartitioning. It currently does not
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support elasticity.

Recent work has explored the problem of supporting multi-tenant deployments in cloud-

oriented DBMSs. This is exemplified by Salesforce.com’s infrastructure that groups appli-

cations onto single-node Oracle DBMS installations [104]. Similar work in the Kairos [21]

and Zephyr [30] projects pack single-node DBMSs together on multi-tenant nodes. In con-

trast, this work focuses on elastically provisioning single applications onto multiple nodes

in a distributed DBMS.

Essentially all data warehouse DBMSs use hash or range partitioning, and provide some

level of on-line reprovisioning. Early work on load balancing by repartitioning for Aster

Data could reorganize a range-partitioned database [35]. Later in the 2000s, several NoSQL

DBMSs were released that use consistent hashing, popularized in Chord [86], to assign

tuples to shared-nothing nodes.

NuoDB [74] and VoltDB [101] are NewSQL DBMSs [9] that partition data across

multiple nodes in a computing cluster and support on-line reprovisioning. NuoDB uses

physical “atoms” (think disk pages) as their unit of partitioning, while VoltDB uses hash

partitioning. A key difference between E-Store and all of these products is that E-Store’s

two-tier partitioning scheme supports both fine- and coarse-grained tuple assignment, and

its tightly-coupled approach balances the overhead of the migration of data and the ex-

pected performance improvement after the migration. Although P-Store uses a one-tiered

approach, it is differentiated due to the use of predictive modeling.

Since the original E-Store paper was published, Google published a paper indicating

that their Spanner database has the capability for automatic load balancing by repartitioning

at the level of fine-grained key ranges [12]. This design enables a two-tiered approach such

as E-Store’s, but the authors do not provide details about their load balancing algorithm or

monitoring infrastructure, so it is not clear if they take advantage of this capability.

Hong et al. proposed a method, called SPORE, for self-adapting, popularity-based

replication of hot tuples [47]. This method mitigates the effect of load imbalance in

key-value DBMSs, such as memcached [73]. SPORE does not support ACID semantics

nor scaling in/out the number of nodes. It replicates hot keys by renaming them and then

this replication is performed randomly without considering underloaded nodes.
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Accordion is a one-tiered elasticity controller that explicitly models the effect of dis-

tributed transactions on server capacity [82]. As with other one-tier approaches, Accordion

relies on a pre-defined set of blocks that can be migrated but are never modified. Accor-

dion is not able to handle situations where hotspots concentrate on a particular block and

make it impossible for any server to process the load of that block. By contrast, E-Store’s

two-tiered approach is able to detect heavily accessed hot tuples within a block, isolate

them, and redistribute them to underloaded nodes.

ElasTraS is an elastic and scalable transactional database [23]. ElasTraS utilizes a de-

coupled storage architecture that separates storage nodes from transaction manager nodes,

each of which is exclusively responsible for a data partition. The focus is on fault toler-

ance, novel system architecture, and providing primitives for elasticity, such as the ability

to add and move partitions [24]. However, ElasTraS emphasizes support for multi-tenant

databases and transaction execution is limited to a single partition, or transaction man-

ager. Therefore, ElasTraS cannot support databases that must be partitioned across several

nodes. Conversely, load-balancing is accomplished by a greedy heuristic that migrates

tenants from over-loaded nodes to the least-utilized nodes. Details for loadbalancing and

partition splitting are not presented by the authors.

PLP is a partitioning technique that alleviates locking and logging bottlenecks in a

shared-memory DBMS [95]. It recursively splits hot data ranges into fixed-size sub-ranges

that are distributed among the partitions. This approach works well with hot ranges that are

large, but requires many sub-range splits before it is able to isolate single hot tuples. As the

number of ranges grows, monitoring costs grow too. PLP continuously monitors the load

on each of the newly created sub-ranges, which has a non-negligible performance impact

during regular execution. E-Store is focused on repartitioning for distributed DBMSs, and

supports scaling in/out as well as load balancing across multiple servers. E-Store normally

uses a lightweight monitoring protocol, and turns on more detailed monitoring only when

needed and for a short period of time. This makes it possible to immediately isolate hot

spots without having to go through multiple repartitioning cycles.

There has been some work on “vertical” (as opposed to “horizontal”) scaling, in which

the amount of CPU and RAM available to tenants in a single VM can vary over time [94,
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103]. This work is complementary to the research presented here, but is not the focus of

this thesis.

5.2 Predictive Modeling for Scalable Systems

Many recent papers have modeled cyclic workloads and load spikes for management of

data centers, Infrastructure-as-a-Service cloud systems, and web applications [37, 61, 84,

100, 85, 39]. Many of the systems described are elastic and include a control-loop for

proactively provisioning resources in advance of load increases. The model for most of

these systems is that servers and other cloud resources have some amount of fixed ini-

tialization cost, but once initialized they are available to serve requests at full capacity. We

study a more complex model of proactive provisioning specific to shared nothing databases,

in which the effective capacity of newly allocated servers is limited by the speed of data

re-distribution.

There has been some recent work on modeling workloads for elastically scaling databases [27],

but it has focused on long-term growth for scientific databases rather than cyclic OLTP

workloads. Holze et al. model cyclic database workloads and predict workload changes [46],

but they do not use these models to proactively reconfigure the database. PerfEnforce [75]

predicts the amount of computing resources needed to meet SLAs for a particular OLAP

query workload. It does not take into account the time to scale out to the new configuration,

nor the impact on query performance during scaling. ShuttleDB implements predictive

elasticity for a multi-tenant Database-as-a-Service system, but unlike our system it only

moves entire databases or VMs [13]. It appears that there is no other system that solves the

problem that P-Store addresses: proactive scaling for a distributed, highly-available OLTP

database.

5.3 Live Migration Techniques

Several live migration techniques have been proposed to move entire databases from one

node to another with minimized interruption of service and downtime. Designed for sys-
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tems with shared storage, Albatross [24] copies a snapshot of transaction state asynchronously

to a destination server. In addition, Slacker [14] is another approach that is optimized for

minimizing the impact of migration in multi-tenant DBMSs by throttling the rate that pages

are migrated from the source to destination. Zephyr [30] allows concurrent execution at the

source and destination during migration, without the use of distributed transactions. Al-

though Zephyr does not require the nodes to be taken off-line at any point, it does require

that indexes are frozen during migration. ProRea [81] extends Zephyr’s approach, but it

instead proactively migrates hot tuples to the destination at the start of the migration.

Previous work has also explored live reconfiguration techniques for partitioned, dis-

tributed DBMSs. Wildebeest employed both reactive and asynchronous data migration

techniques for a distributed MySQL cluster [51]. In [68] a method is proposed for VoltDB

that uses statically defined virtual partitions as the granule of migration. Lastly, as described

above, Squall [28] allows fine-grained on-line reconfiguration of partitioned databases. In

theory, E-Store can use any of these transport mechanisms; the prototype presented here

uses a modified version of Squall since it already supports fine-grained partitioning with

H-Store.

There has been a great deal of work on characterizing the cost and time of virtual

machine live migration [1, 60, 102]. For live migration of databases, however, cost met-

rics previously studied include service unavailability, number of failed requests, impact

on response time, and data transfer overhead [23]. Previous work on live migration of

databases has focused on reducing these sources of overhead while maintaining ACID

guarantees [28, 23, 30, 24, 14]. This thesis shows that with careful performance tuning,

it is possible to virtually eliminate these sources of overhead for certain workloads.
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Chapter 6

Future Work

There are several directions for future research into elastic database systems. Low hanging

fruit includes extensions to the existing E-Store and P-Store systems and possible unifica-

tion of the two systems into one ideal elastic system. Other interesting research directions

include comparing the benefits of replication versus partitioning, as well as comparing

scale-up approaches to elasticity with scale-out approaches.

6.1 Extensions to E-Store and P-Store

There are several directions for future research on E-Store and P-Store. An obvious path is

to unify these two systems into a single system which uses predictive modeling for proac-

tive reconfiguration, but also manages skew with E-Store’s two-tiered approach. There are

a couple of problems which make this unification tricky. First, P-Store’s equations for the

cost, time, and effective capacity of the system during reconfiguration must be modified to

take skew into account. Second, the scheduling algorithm for reconfigurations will likely

need to be modified to offload hot spots quickly while still moving cold data according to

P-Store’s scheduling algorithm.

Although Squall was built separately from E-Store and P-Store, both elastic systems

rely on Squall heavily and have made several modifications to improve its performance.

There are many other potential improvements to Squall that should be implemented in

future work. For example, clients should receive a copy of each new partition plan so they
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send transactions to the correct server. Squall should take better advantage of speculative

execution [52] to execute transactions during data migration. To improve its usability,

Squall should automatically self-tune in order to find the optimal chunk size and delay

between chunks. Future work should also investigate whether other design alternatives to

Squall are better suited for moving large amounts of data with high throughput workloads.

Along these lines, it would be interesting to try the elasticity techniques discussed in

this thesis on a different DBMS with a different live migration system. VoltDB [101] is

an obvious choice since it was inspired by H-Store and shares many of the same design

features, but the techniques should apply to other systems as well. B2W uses Riak [56] for

their production cart and checkout databases, so building P-Store into Riak would enable

B2W to quickly take advantage of this research to help their business.

Another direction is to extend the frameworks to support more complex workloads and

applications that have many multi-partition transactions. Clay [83] has already examined

this problem for reactive elasticity, but it would be interesting to see if Clay’s techniques

can be combined with predictive modeling to scale these complex workloads proactively.

Another direction specific to E-Store is developing techniques to reduce the overhead

of E-Monitor for more complex workloads. One possible approach is to use approximate

frequent item counting algorithms such as SpaceSaving [66] or LossyCount [64].

Specific to P-Store, it would be interesting to try P-Store’s techniques on other bench-

marks, including those with a less predictable workload, with higher levels of skew, and

with some distributed transactions. The performance should decay gracefully as conditions

become less ideal.

It would also be useful to make P-Store’s reactive response to unexpected load changes

configurable. By default, P-Store reacts by scaling out at the same rate R as it uses for

proactive reconfigurations. Users should be able to specify if they want to scale out by

some multiple of R during reactive reconfigurations.

Finally, it would be interesting to extend the planning algorithms for both systems to

take memory consumption into account so that reconfiguration never places more data on

a node than its memory capacity. In addition, the monitoring components can be extended

to monitor memory usage and trigger reconfiguration if memory on some node is about to
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be exhausted.

6.2 Replication vs. Partitioning

E-Store and P-Store are both designed to work with partitioned databases such as H-Store,

in which tables are split into disjoint sets of tuples that are distributed across the database

cluster. H-Store supports replicating small, read-only tables across all nodes, but currently

does not support partial replication of larger tables. The H-Store environment has allowed

us to focus exclusively on elasticity, without the added complexity of replication. Future

research should examine how to combine elasticity techniques with replication since many

existing OLTP DBMSs replicate data for fault tolerance and high availability. These exist-

ing systems typically have three replicas of each tuple, but some have as many as six [99]

in order to survive disasters such as loss of a data center.

In addition to providing fault tolerance, replicas also impact the performance of the

system. An interesting line of research would be to study how different characteristics

of the workload impact the optimal number of replicas for each tuple. If a workload is

write-heavy, it will likely be best to limit the number of replicas to the minimum number

required for fault tolerance. If a workload is read-heavy, however, there may be a benefit

to increasing the number of replicas for some tuples. Very hot, read-mostly tuples should

likely be replicated many times.

An elastic system could take advantage of replication to not only achieve fault tolerance,

but also improve performance. It would need to monitor its workload and dynamically

adjust the number of replicas for each tuple in the database to the optimal number given

the read/write characteristics and level of skew. These techniques could be combined with

E-Store’s and P-Store’s techniques for dynamic partitioning to build a highly fault tolerant

and performant system.
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6.3 Scale-up vs. Scale-out

E-Store and P-Store both assume a fixed capacity per node and per partition. Therefore,

they achieve elasticity by “scaling out”, i.e., adding some number of identical commodity

servers to the database cluster. This fits with H-Store’s model of one single-threaded execu-

tion engine per partition and a fixed number of partitions per node. It would be interesting

to examine how elasticity models might change in a different environment in which parti-

tions can be accessed by a variable number of threads, and/or servers can host a variable

number of partitions. This would enable elastic DBMSs to “scale up” by keeping the num-

ber of servers the same, but increasing the size of each server (e.g., by adding additional

DRAM or CPU cores). Public cloud vendors like Amazon AWS have made it easy to scale

up by simply choosing a different instance type [5].

When deciding whether to scale up or scale out, an elastic system will likely need to

consider several different aspects of the workload. In particular, if a workload has a “tree

schema” with many root tuples, it is a good candidate for scaling out. If the workload has

many multi-partition transactions, however, it may be a better candidate for scaling up.

Another important consideration will likely be the cost of scaling up. As of August

2017, the cheapest Amazon EC2 instances cost as little as $34 per year, while the most

expensive instances cost over $80,000 [5]. Unless the workload is difficult to partition,

scaling out will likely be a more cost-effective solution.

6.4 Beyond OLTP and Elasticity

Beyond OLTP databases, there has been a great deal of work on making on-line analytical

processing (OLAP) and hybrid transactional/analytical processing (HTAP) databases elas-

tic and adaptable [22, 75, 71, 38, 8]. Future work should investigate whether ideas from

OLTP elasticity can be applied to HTAP and OLAP, and vice-versa. Furthermore, it would

be interesting to see if techniques for managing shared nothing DBMSs can be applied to

the shared storage model, which is becoming increasingly prevalent in cloud-based data

warehouses [22, 67]. For example, the elasticity ideas from this thesis could be applied to
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the computation layer of a shared storage DBMS, enabling strong cache locality and cache

consistency among the compute nodes as the computation layer scales.

Beyond elasticity, there are several other ways to make databases adaptable and self-tuning.

Prior work has already investigated automatic index creation [41], automatic materialized

view selection and maintenance [63, 106, 70], and automatic adjustment of the storage lay-

out [43, 50, 2, 8]. Future work should investigate other forms of DBMS adaptation and

try to combine complimentary techniques into a single database. Combining techniques

in this way enables reuse of monitoring features, since many of the approaches require

similar statistics about the DBMS. This future study should also attempt to understand the

performance overhead caused by adding each additional feature, and quantify the tradeoff

between performance and adaptability.

6.5 Summary

There are many interesting questions ripe for investigation in the area of database elasticity.

The systems presented in this thesis have the potential for several improvements, but there

are other models of elasticity and adaptability worth investigating as well. This chapter

presented replication and scaling up as two alternative approaches to elasticity, but there

may be many others.
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Chapter 7

Conclusion

OLTP applications require high availability and performance from their DBMS, but the

workload variability and skew present in many OLTP workloads make it difficult for the

DBMS to meet performance requirements in a cost-effective manner. Currently, many

companies manage workload variability by provisioning a large cluster of database servers

with sufficient capacity to serve the peak workload. This strategy wastes a huge amount of

money, power, and hardware since computing resources are underutilized most of the time.

It also does not guarantee good performance, since skew may cause one server to become

overloaded while others are idle, or a large workload spike may surpass the previous peak

and overload the entire cluster.

To enable an OLTP DBMS to use resources efficiently and achieve good performance in

the presence of workload variability and skew, this thesis has presented two elastic database

systems, called E-Store and P-Store. Both systems continuously monitor the load on the

DBMS, and use the load statistics collected to determine when and how to reconfigure the

database to meet performance requirements and minimize cost. The systems perform re-

configuration without manual intervention, while keeping the database live and maintaining

transactional ACID guarantees.

E-Store is designed to maintain system performance over a highly variable and diverse

load. It accomplishes this goal by balancing tuple accesses across an elastic set of parti-

tions. The framework consists of two sub-systems, E-Monitor and E-Planner. E-Monitor

identifies load imbalances requiring migration based on CPU utilization, and tracks for a
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short time window the most-read or -written “hot” tuples. E-Planner chooses which data to

move and where to place it. To make intelligent decisions on how to balance the workload

across a distributed OLTP DBMS, E-Planner uses smart heuristics. It generates the recon-

figuration plan in milliseconds, and the result is a load-balanced system. Moreover, E-Store

allows OLTP DBMSs to scale out or in efficiently. The experiments presented in Chapter 3

show that E-Store can start reconfiguring the database after approximately 10 seconds of

detecting load skew or a load spike. Reconfiguration results in increasing throughput by up

to 4× while reducing latency by up to 10×.

P-Store is a novel database system that uses predictive modeling to elastically recon-

figure the database before load spikes occur. Chapter 4 defined the problem that P-Store

seeks to solve: how to reduce costs by deciding when and how to reconfigure the database.

P-Store solves this problem with a novel dynamic programming algorithm for scheduling

reconfigurations, as well as a new analytical model for shared nothing reconfiguration and

parallel migration. To accurately predict the load for different applications, P-Store uses a

time-series model called Sparse Periodic Auto-Regression (SPAR) [17]. Chapter 4 shows

an evaluation of running a real online retail workload in H-Store and using P-Store’s pre-

dictive models to decide when and how to reconfigure, thus demonstrating the cost savings

that can be achieved with P-Store.

Although the ideas presented in this thesis are in the context of two distinct systems, the

techniques are complementary, and future work should unify the ideas in a single system.

Furthermore, these ideas are in the context of one model of elasticity based on reparti-

tioning and scaling out. Future work should investigate whether other models can further

improve performance for some workloads. By answering these questions and continuing

to investigate techniques for database elasticity and adaptability, we can ensure that future

OLTP DBMSs will be cost efficient, high performance, and fully autonomous.
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Appendix A

Symbols Used Throughout Thesis

For ease of reference, Tables A.1 to A.3 list the symbols used throughout the thesis in the

order they appear.
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Symbol Definition
W Length of the monitoring time window
{r1,r2, . . . ,rm} Set of all tuples (records) in the database
{p1, p2, . . . , pc} Set of partitions
L(ri) The load (access count) on tuple ri
L(p j) Sum of tuple accesses for partition p j
TK(p j) Set of the top-k most frequently accessed tuples for partition p j
B Size of each block of cold tuples
A Average load per partition
A+ ε Maximum load allowed per partition after bin packing
xi, j ∈ {0,1} Binary decision variable in bin packing algorithm for assignment

of hot tuple ri to partition p j
yk, j ∈ {0,1} Binary decision variable in bin packing algorithm for assignment

of cold block bk to partition p j
n Number of hot tuples in the database
d Number of cold tuple blocks in the database
c Number of partitions
T Transmission cost of moving a tuple
ti, j ∈ {0,T} Transmission cost of assigning tuple ri to partition p j

Table A.1: Symbols and definitions used in Chapter 3
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Symbol Definition
C Cost of a DBMS cluster over T time intervals
T Number of time intervals considered in calculation of C
st Number of servers in the database cluster at time t
Q The target average throughput of a single database server
Q̂ The maximum throughput of a single database server
D The time needed to move all data in the database once with

a single thread
R The rate at which data must be migrated to move the entire

database in time D
B Number of servers before a reconfiguration
A Number of servers after a reconfiguration
move A reconfiguration from A to B servers
L Time-series array of predicted load of of length T
N0 Number of nodes allocated at the start of Algorithm 1
Z The maximum number of machines needed to serve the

predicted load in L
m A matrix to memoize the cost and best series of moves

calculated by Algorithm 2
M The sequence of moves returned by Algorithm 1
cap(N) Returns the maximum capacity of N servers
T (B,A) Returns the time for a reconfiguration from B to A servers
C(B,A) Returns the cost of a reconfiguration from B to A servers
eff-cap(B,A, f ) Returns the effective capacity of the DBMS after fraction f of the

data has been moved when reconfiguring from B to A servers
P The number of partitions per server
max‖ The maximum number of parallel migrations during a

reconfiguration

Table A.2: Symbols and definitions used in Chapter 4
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Symbol Definition
avg-mach-alloc(B,A) Returns the average number of machines allocated when

reconfiguring from B to A servers
s Minimum of B and A
l Maximum of B and A
∆ The difference between s and l
r The remainder of dividing ∆ by s
fn The fraction of the database hosted by node n
f The fraction moved so far of the total data moving

during a reconfiguration
τ The SPAR forecasting window
ak SPAR coefficient for periodic load
b j SPAR coefficient for recent load
y(t + τ) SPAR forecasted load at time t + τ

n The number of previous periods considered by SPAR
m The number of recent load measurements considered by

SPAR

Table A.3: Symbols and definitions used in Chapter 4, continued
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