
P-Store: An Elastic Database System with Predictive
Provisioning

Rebecca Taft∗
rytaft@csail.mit.edu

MIT

Nosayba El-Sayed†

Marco Serafini
nelsayed@hbku.edu.qa

mserafini@hbku.edu.qa

Qatar Computing Research Institute -

HBKU

Yu Lu
yulu3@illinois.edu

University of Illinois

Urbana-Champaign

Ashraf Aboulnaga
aaboulnaga@hbku.edu.qa

Qatar Computing Research Institute -

HBKU

Michael Stonebraker
stonebraker@csail.mit.edu

MIT

Ricardo Mayerhofer
Francisco Andrade

ricardo.mayerhofer@b2wdigital.com

francisco.jose.andrade@gmail.com

B2W Digital

ABSTRACT
OLTP database systems are a critical part of the operation of many

enterprises. Such systems are often configured statically with suffi-

cient capacity for peak load. For many OLTP applications, however,

the maximum load is an order of magnitude larger than the mini-

mum, and load varies in a repeating daily pattern. It is thus prudent

to allocate computing resources dynamically to match demand. One

can allocate resources reactively after a load increase is detected, but

this places additional burden on the already-overloaded system to

reconfigure. A predictive allocation, in advance of load increases, is

clearly preferable.

We present P-Store, the first elastic OLTP DBMS to use predic-

tion, and apply it to the workload of B2W Digital (B2W), a large

online retailer. Our study shows that P-Store outperforms a reactive

system on B2W’s workload by causing 72% fewer latency violations,

and achieves performance comparable to static allocation for peak

demand while using 50% fewer servers.

ACM Reference Format:
Rebecca Taft, Nosayba El-Sayed, Marco Serafini, Yu Lu, Ashraf Aboul-

naga, Michael Stonebraker, Ricardo Mayerhofer, and Francisco Andrade.

2018. P-Store: An Elastic Database System with Predictive Provisioning.

In SIGMOD’18: 2018 International Conference on Management of Data,
June 10–15, 2018, Houston, TX, USA. ACM, New York, NY, USA, 15 pages.

https://doi.org/10.1145/3183713.3190650

∗With Cockroach Labs at time of publication.
†Work done while part of a joint MIT-QCRI postdoc program.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’18, June 10–15, 2018, Houston, TX, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the Asso-
ciation for Computing Machinery.
ACM ISBN 978-1-4503-4703-7/18/06. . . $15.00
https://doi.org/10.1145/3183713.3190650

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1

1.5

2

2.5x 10
4

Lo
ad

 (r
eq

ue
st

s/
m

in
)

Time (min)

1−day

Figure 1: Load on one of B2W’s databases over three days.
Load peaks during daytime hours and dips at night.

1 INTRODUCTION
Large, modern OLTP applications increasingly store their data in

public or private clouds. Many of these applications experience

highly variable and spikey traffic patterns. Prior work on elastic

databases has shown how a DBMS can automatically adapt to un-

predictable workload changes to meet the throughput and latency

requirements of its clients [26, 27, 31]. However, these systems

suffer from poor performance during reconfiguration because re-

configuration is only triggered when the system is already under

heavy load. Such performance issues make elastic database systems

unworkable for companies that require high availability and fast

response times. These issues could be avoided if reconfiguration

were started earlier, but that requires knowledge of the future work-

load. Fortunately, OLTP workloads often follow a cyclic, predictable

pattern. This paper shows how to take advantage of these patterns to

reconfigure the DBMS before performance issues arise.

Online retail companies in particular have extremely predictable

aggregate load, essentially following a sine wave throughout the

course of the day. Furthermore, the difference between the crest

and the trough of the wave is large. In this paper, we examine the

workload of one such online retail company, B2W Digital (B2W) [2].

Figure 1 shows the B2W workload over three days. As can be seen,

the peak load is about 10× the trough.

If companies like B2W could take advantage of predictive model-

ing to use exactly as many computing resources as needed to manage

their workload, they could reduce the average number of servers

Industry 1: Adaptive Query Processing SIGMOD’18, June 10-15, 2018, Houston, TX, USA

205

needed for their database by about half. In the case of a private

cloud, these servers could be temporarily repurposed for some other

application in the organization. In a public cloud, the reduction in

servers translates directly into reduced expenses.

In this paper, we focus on workload prediction and dynamic pro-

visioning for distributed, shared nothing OLTP database systems,

an area that has not been explored by previous work. There has

been a lot of work in the general area of provisioning in data cen-

ters, Infrastructure-as-a-Service cloud systems and web applications

(e.g. [15, 16, 23, 28, 29, 34]). These are stateless services, where the

startup cost of adding a new server is fixed. Shared nothing databases

pose harder challenges because they are stateful services, which re-

quire selective state migration. Some work has targeted database

systems, but it focused either on analytics workloads [10, 18, 25],

which have much looser performance requirements than OLTP sys-

tems, or multi-tenant settings composed of many small database

instances that can be served by a single server [4].

This paper examines how to realize cost savings by reconfigur-

ing the database proactively before the load exceeds the capacity

of the system. Previous work has shown that reconfiguring a main-

memory OLTP database in reaction to detected skew or overload

can significantly improve performance [27, 31]. But responding

reactively to overload entails performing data migration while the

system is running at its maximum capacity. While data is in flight,

the system must still accept transactions and preserve consistency

guarantees. Depending on the amount of data that must be migrated,

reconfiguration can take anywhere from a few seconds to ten min-

utes or more [11]. In the absence of additional available resources,

migration interferes with the execution of regular transactions and

degrades the performance of the system. This is not an option for on-

line retail companies because their customers will experience slower

response times at the start of a load spike when the database tries to

reconfigure the system to meet demand. Many from industry have

documented that slow response times for end users leads directly to

lost revenue for the company [5, 6, 20–22]. In a sense, the start of the

overload period is exactly the wrong time to begin a reconfiguration,

which is a weakness of all reactive techniques.

This paper presents P-Store, the first elastic OLTP DBMS to use

state-of-the-art time-series prediction techniques to forecast future

load on the database. Instead of waiting for the database to become

overloaded, it proactively reconfigures the database when the sys-

tem still has sufficient resources to migrate data and serve client

transactions concurrently and without performance interference. To

decide when to start a new reconfiguration and how many machines

to allocate, P-Store uses a novel dynamic programming algorithm.

The algorithm produces a schedule that minimizes the number of ma-

chines allocated while ensuring sufficient capacity for the predicted

load, which is a constantly moving target.

This paper shows that our methods can predict real workloads

from B2W (as well as Wikipedia [14]) with high accuracy. We

demonstrate the superiority of P-Store over a state-of-the art purely

reactive system, E-Store [31]. Overall, we envision a composite

strategy for elastic provisioning in shared nothing OLTP DBMSs,

which is a combination of complementary techniques: (i) predictive
provisioning, the focus of this paper; (ii) reactive provisioning to

react in real time to unpredictable load spikes; and (iii) manual
provisioning for rare one-off, but expected, load spikes (e.g. special

promotions for B2W). The evaluation shows that our approach,

which combines predictive and reactive techniques, is sufficient to

nearly always ensure adequate capacity – even during the load spikes

on Black Friday, B2W’s biggest promotional sale day of the year.

Thus, manual provisioning is not strictly necessary, but may still be

used as an extra precaution for rare, important events. The major

contributions of this work are:

• A dynamic programming algorithm to determine when and how

to reconfigure a database given predictions of future load.

• A scheduling algorithm for executing a reconfiguration, as well

as a model characterizing the elapsed time, cost and effective

system capacity during the reconfiguration.

• An analysis showing the effectiveness of using Sparse Periodic

Auto-Regression (SPAR) for predicting database workloads.

• An open-source benchmark for an online retail application [30].

• A comprehensive evaluation using a real dataset and workload.

2 BACKGROUND
Increasingly, OLTP applications are moving to main-memory, multi-

node DBMSs because of their dramatically superior performance.

As such, in this study we use H-Store [19], a multi-node, shared

nothing main-memory OLTP DBMS. An H-Store cluster consists of

one or more physical machines (also referred to as servers or nodes),

each of which contains one or more logical data partitions.

Tables in H-Store are split horizontally into disjoint sets of rows,

which are each assigned to one of the data partitions (for simplicity

we do not consider replication). The assignment of rows to partitions

is determined by one or more columns, which constitute the parti-
tioning key, and the values of these columns are mapped to partitions

using either range- or hash-partitioning. Transactions are routed to

specific partitions based on the partitioning keys they access.

H-Store is extremely efficient as long as data is not heavily

skewed, there are few distributed transactions, and there are enough

CPU cores and data partitions to handle the incoming requests. Previ-

ous database elasticity studies such as Accordion [26], E-Store [31]

and Clay [27] have shown how scaling out and reconfiguring H-Store

with a live migration system can help alleviate performance issues

due to skew, distributed transactions, and heavy loads.

Accordion moves data at the granularity of fixed, pre-defined data

chunks, whereas E-Store and Clay work at finer granularity. The

E-Store system works by constantly monitoring the CPU utilization

of each database partition. If an imbalance is detected, detailed mon-

itoring is enabled for a short period of time to determine which data

is “hot” and therefore causing the imbalance. Next, E-Store creates

a new partition plan to relocate these hot tuples and balance the

workload. Finally, a live migration system such as Squall [11] recon-

figures the database to match the new partition plan. E-Store does

not consider distributed transactions, so it is designed for workloads

in which most transactions access a single partitioning key. Clay

generalizes the E-Store approach to multi-key transactions. Rather

than moving individual hot tuples, Clay moves “clumps” of hot and

cold tuples that are frequently accessed together in order to balance

the workload without creating new distributed transactions.

One major downside of the existing elastic database systems is

that they are all reactive, meaning they do not reconfigure the data-

base until performance issues are already present. At that point, it

may be too late to reconfigure the system without severely impacting

Industry 1: Adaptive Query Processing SIGMOD’18, June 10-15, 2018, Houston, TX, USA

206

(a) Ideal Capacity (b) Actual Servers
Allocated

Figure 2: Ideal capacity and actual servers allocated to handle
a sinusoidal demand curve.

performance, as discussed in the previous section. To alleviate this

performance problem, we have designed P-Store, the first predictive
elastic database system which reconfigures the database before per-

formance issues arise. Throughout the rest of the paper we describe

in detail how the system works, and demonstrate in our evaluation

its superiority to reactive approaches.

3 PROBLEM STATEMENT
We now define the problem that predictive elasticity seeks to solve.

We consider a DBMS having a latency constraint. The latency con-

straint specifies a service level agreement for the system: for example,

that 99% of the transactions must complete in under 500 millisec-

onds. The predictive elasticity problem we consider in this paper

entails minimizing the cost C over T time intervals:

C =
T

∑
t=1

st (1)

where st is the number of servers in the database cluster at time t.
For convenience, we have included these and other symbols used

throughout the paper in a table in Appendix A.

A solution to the predictive elasticity problem must indicate when
to initiate a reconfiguration of the database (if at all) and the target
number of servers for each reconfiguration. In order to minimize the

cost in Equation (1) and respect the latency constraint, our system

should try to make the database’s capacity to handle queries as close

as possible to the demand while still exceeding it. In the ideal case,

the capacity curve would exactly mirror the demand curve with a

small amount of buffer (see Figure 2a). In reality, we can only have

an integral number of servers at any given time, so the actual number

of servers allocated must follow a step function (see Figure 2b). This

must be taken into consideration when minimizing the gap between

the demand function and the capacity curve.

An additional complexity in the predictive elasticity problem is

that this step function is actually an approximation of the capacity

of the system. The effective capacity of the system does not change

immediately after a new server is added; it changes gradually as data

from the existing servers is offloaded onto the new server, allowing

it to serve queries. The next section describes how P-Store manages

this complexity and solves the predictive elasticity problem.

4 ALGORITHM FOR PREDICTIVE
ELASTICITY

This section describes P-Store’s algorithm for predictive elasticity.

First, we describe preliminary analysis that is required to extract key

DBMS parameters, such as the capacity of each server (Section 4.1).

Then we introduce the key assumptions and discuss the applicability

of the algorithm (Section 4.2). Next, we introduce P-Store’s algo-

rithm to determine a sequence of reconfigurations that minimizes

cost and respects the application’s latency constraint (Section 4.3).

Finally, we show how the timing and choice of reconfigurations

depend on the way reconfigurations are scheduled (Section 4.4). The

predictive elasticity algorithm requires predictions of future load,

and we describe the P-Store load prediction component in Section 5.

Section 6 describes how we put the components together in P-Store.

4.1 Parameters of the Model
Our model has three parameters that must be determined empirically

for a given workload running on a given database configuration:

(1) Q: Target throughput of each server. Used to determine the

number of servers required to serve the predicted load.

(2) Q̂: Maximum throughput of each server. If the load exceeds this

threshold, the latency constraint may be violated.

(3) D: Shortest time to move all of the data in the database ex-

actly once with a single sender-receiver thread pair, such that

reconfiguration has no noticeable impact on query latency. Re-

configurations scheduled by P-Store will actually move a subset
of the database with parallel threads, but D is used as a parame-

ter to calculate how long a reconfiguration will take so it can be

scheduled to complete in time before a predicted load increase.

We assume that D increases linearly with database size.

All of these parameters can be determined through offline evaluation

based on the latency constraint of the system as defined in Section 3.

Q and Q̂ can be determined empirically by running representative

transactions from the given workload on a single server, and steadily

increasing the transaction rate over time. At some point, the system

is saturated and the latency constraint is violated. We set Q̂ to 80% of

this saturation point to ensure some “slack”. Q should be set to some

value below Q̂ so that normal workload variability does not cause

load to exceed Q̂. We set Q to 65% of the saturation point in most of

our evaluation, but we show through simulation that clients can vary

Q to prioritize either minimizing cost or maximizing performance.

D is determined by fixing the transaction rate per node at Q̂ and

executing a series of reconfigurations, where in each reconfiguration

we increase the rate at which data is moved. At some point, the

reconfiguration starts to impact the performance of the underlying

workload and lead to violations of the latency constraint because

there are not enough CPU cycles to manage the overhead of reconfig-

uration and also execute transactions. D is set to the reconfiguration

time of moving the entire database at the highest rate for which

reconfiguration has no noticeable impact on query latency, plus a

buffer of 10%. The buffer is needed because D will actually be used

to calculate the time to move subsets of the database (not the entire

thing), and the data distribution may not be perfectly uniform.

4.2 Applicability
The proactive reconfiguration algorithm we will describe in Sec-

tion 4.3 relies on several assumptions. We have validated these

assumptions for the B2W workload, and we believe that they are

widely applicable to many OLTP applications, as confirmed by the

publicly available data on the Wikipedia workload [14]. The key

assumptions are:

• Load predictions are accurate to within a small error. Sec-

tion 5 shows how SPAR, the default predictive model used by

P-Store, works well for several workloads. But our algorithm can

be combined with any predictive model if it is well suited for a

given workload.

Industry 1: Adaptive Query Processing SIGMOD’18, June 10-15, 2018, Houston, TX, USA

207

?

Figure 3: Goal of the Predictive Elasticity Algorithm.

• The workload mix is not quickly changing. This is a reason-

able assumption for most OLTP workloads, in which the set of

transactions and their distribution do not change very often. When

they do change, we can simply measure Q and Q̂ again.

• The database size is not quickly changing. This is true of many

OLTP applications that keep only active data in the database. His-

torical data is moved to a separate data warehouse. Any significant

size increase or decrease requires re-discovering D.

• The workload distribution is (approximately) uniform across
the data partitions. Different tuples in a database often have

skewed access frequencies, but this skew is smoothed out when

the tuples are randomly grouped into data partitions with a good

hash function. As a result, the load skew among data partitions

(and thus servers) is generally much lower than the load skew

among tuples.

• The data is distributed uniformly across the data partitions.
Similar to the previous point, some keys may have more data

associated with them than others, but differences are generally

smoothed out at the partition level.

• The workload has few distributed transactions. Transactions

accessing multiple rows with different partitioning keys may be-

come distributed if data placement changes. Many partitioned

database systems, including H-Store, require that distributed trans-

actions are few to achieve (almost) linear scalability.

Although P-Store is implemented in a main memory setting, the

ideas presented here should be applicable to most partitioned OLTP

DBMSs with some parameter changes.

4.3 Predictive Elasticity Algorithm
Our algorithm for proactive reconfiguration must determine when

to reconfigure and how many machines to add or remove each time.

This corresponds to finding a series of moves, where each move

consists of adding or removing zero or more machines (“doing

nothing” is a valid move).

Formally, a move is a reconfiguration going from B machines

before to A machines after (adding A−B machines on scale-out,

removing B−A machines on scale-in, or doing nothing if A = B).

Each move has a specified starting and ending time. We will use the

variables B and A and the notion of move throughout the paper.

At a high level, our algorithm adapts to a constantly changing

load by planning a series of moves from the present moment to

a specified time in the future. For simplicity, we discretize that

period of time into T time intervals. Each move therefore lasts some

positive number of time intervals (rounded up to the nearest integer).

Figure 3 shows an example of the high level goal of the algorithm.

In this schematic, P-Store predicts the load T = 9 time intervals

ahead, and the goal is to find a series of moves starting at B = 2

machines at t = 0 and ending at A = 4 machines at t = 9, such

that capacity exceeds demand and cost is minimized. Minimizing

cost requires scale-out moves to be delayed as much as possible.

However, they also must be started as early as necessary to ensure

sufficient resources to migrate data without disrupting the regular

database workload. The algorithm has three functions: best-moves,

cost and sub-cost, which we discuss next.

4.3.1 Top-Level Algorithm. The best-moves function in Algo-

rithm 1 is the top-level algorithm to find the optimal sequence of

moves. It receives as input a time-series array of predicted load L of

length T (generated by P-Store’s online predictor component, the

topic of Section 5), as well as N0, the number of machines allocated

at time t = 0, and the target average transaction rate per node Q from

Section 4.1. The output of the algorithm is an optimal sequence M
of contiguous, non-overlapping moves ordered by starting time.

Algorithm 1: Calculate best series of moves for given time-

series array of predicted load L, starting with N0 nodes.

1 Function best-moves(L, N0, Q)
Input: Time-series array of predicted load L of length T , machines

allocated initially N0, target avg. txn rate per node Q
Output: Best series of moves M

// Calculate the maximum number of machines ever

// needed to serve the predicted load

2 Z ← max(�max(L)/Q�,N0);

3 for i ← 1 to Z do
// Initialize matrix m to memoize cost and

best

// series of moves

4 m ← /0;

5 if cost(T , i, L, N0, Z, m) �= ∞ then
6 t ← T ; N ← i;
7 while t > 0 do
8 Add (t,N) to M;

9 t ← m[t,N].prev time;

10 N ← m[t,N].prev nodes;

11 Reverse M;

12 return M;

// No feasible solution

13 return /0;

Algorithm 1 first calculates Z, the number of machines needed to

serve the maximum predicted load in L (Line 2). Next, Algorithm 1

iteratively tries to find a feasible series of moves ending with as few

machines as possible, starting with i = 1 and incrementing by one

each time, with a maximum of Z (Lines 3 to 12). A sequence of

moves is “feasible” if no server will ever be overloaded according

to the load prediction L. The cost function returns the minimum

cost of a feasible sequence of moves ending with i servers at time

T (Line 5; the internals of the cost function will be discussed in the

next section). If no feasible sequence exists, the function returns

an infinite cost. Otherwise, the cost function populates a matrix m
of size T ×Z with the optimal moves it has found: m[t,A] contains

the last optimal move that results in having A servers at time t. The

element m[t,A] contains the time when the move starts, the initial

number of servers for the move, and the cost during the move, i.e.,

the average number of servers used multiplied by the elapsed time.

Industry 1: Adaptive Query Processing SIGMOD’18, June 10-15, 2018, Houston, TX, USA

208

As soon as Algorithm 1 finds a series of moves that is feasible

(i.e., with finite cost), it works backwards through the matrix m to

build a series of memoized best moves (Lines 6 to 10). Then, it

reverses the list of moves so they correspond to moving forward

through time, and it returns the reversed list (Lines 11 and 12). It is

not necessary to continue with the loop after a feasible solution is

found, because all later solutions will end up with more machines

(i.e., higher cost).

If no feasible solution is found (Line 13), that means the initial

number of machines N0 is too low, and it is not possible to scale

out fast enough to handle the predicted load. This can happen if, for

example, there is a news event causing a flash crowd of customers

on the site. There are a couple of options in this case: (1) reactively

increase the data migration rate to meet capacity demands by moving

larger chunks at a time (which will incur some latency overhead due

to data migration), or (2) continue to move data at the regular rate and

suffer some overhead due to insufficient capacity. By default, P-Store

reacts to unexpected load spikes with option (2). The evaluation in

Section 8.2 shows the performance of these two strategies.

4.3.2 Finding an Optimal Sequence of Moves. We now de-

scribe the cost and sub-cost functions. We first introduce some nota-

tion. To minimize the cost of the system over time T , we must find a

series of moves spanning time T such that the predicted load never

exceeds the effective capacity of the system, and the sum of the costs

of the moves is minimized. In order to plan a move from B to A
machines, we need to determine how long the move will take. The

function T (B,A) expresses this time, which depends on the specific

reconfiguration strategy used by the system. We will discuss how

to calculate T (B,A) in Section 4.4.2. We also need to find out the

moves that minimize cost. The cost of a move is computed by the

function C(B,A), which will be described in Section 4.4.3.

In order to determine the optimal series of moves, we have for-

mulated the problem as a dynamic program. This problem is a good

candidate for dynamic programming because it carries optimal sub-

structure. The minimum cost of a series of moves ending with A
machines at time t is equal to the minimum cost of a series of moves

ending with B machines at time t − T (B,A), plus the (minimal) cost

of the last optimal move, C(B,A).
This formulation is made precise in Algorithms 2 and 3. Algo-

rithm 2 finds the cost of the optimal series of feasible moves ending

at a given time t and number of machines A. Line 2 of Algorithm 2

checks the constraints of the problem, in particular that t must not

be negative, and if t = 0 the number of machines must correspond

to our initial state, N0. It also checks that the predicted load at time

t does not exceed the capacity of A machines. We assume that the

cost of latency violations (see Section 3) is extremely high, so for

simplicity, we define the cost of insufficient capacity to be infinite.

Moving forward through the algorithm, recall that the matrix ele-

ment m[t,A] stores the last optimal move found by a call to cost. But

its secondary purpose is for “memoization” to prevent redundant

computation. Accordingly, Algorithm 2 checks to see if the optimal

set of moves for this configuration has already been saved in m, and

if so, it returns the corresponding cost (Lines 3 and 4). Finally, we

come to the recurrence relation. The base case corresponds to t = 0,

in which we simply return the cost of allocating A machines for one

time interval (Lines 5 and 6). The recursive step is as follows: find

Algorithm 2: Find a feasible sequence of moves with minimum

cost that ends with A nodes at time t. Memoize best moves in m.

1 Function cost(t, A, L, N0, Z, m)
Input: Current time interval t, no. of nodes A, time-series array of

predicted load L of length T , machines allocated initially

N0, max. no. of machines available to allocate Z, matrix m
of size T ×Z to memoize cost and best series of moves

Output: Min. cost of system after time t, ending with A nodes

// penalty for constraint violation or

insufficient capacity

2 if t < 0 or (t = 0 and A �= N0) or L[t] > cap(A) then return ∞;

3 if m[t,A] exists then /* check memoized cost */

4 return m[t,A].cost;

5 if t = 0 then /* base case */

6 m[t,A].cost ← A;

7 else /* recursive step */

8 B ← arg min1≤i≤Z(sub-cost(t, i, A, L, N0, Z, m));

// a move must last at least one time interval

9 if T (B,A) = 0 then T (B,A)← 1;

10 m[t,A].cost ← sub-cost(t, B, A, L, N0, Z, m);

11 m[t,A].prev time ← t −T (B,A);
12 m[t,A].prev nodes ← B;

13 return m[t,A].cost;

the cost of the optimal series of moves ending with B → A, for all B,

and choose the minimum (Line 8). There is one caveat for the case

when B = A (the “do nothing” move). Since the time and cost of the

move are both 0, we need to artificially make the move last for one

time step, with a resulting cost of B (Line 9).

Algorithm 3 finds the cost of the optimal series of moves ending

at a given time t with the final move from B to A machines. It first

adjusts the time and cost of the move for the case when B = A, as

described previously for Algorithm 2 (Line 2). Next it checks that the

final move from B → A would not need to start in the past (Lines 3

to 5). Finally, it checks that for every time interval during the move

from B → A, the predicted load never exceeds the effective capacity
of the system (eff-cap), which is the capacity of the system while

a reconfiguration is ongoing (Lines 6 to 9). We will describe how to

compute effective capacity in Section 4.4.4. If all of these checks

succeed, it makes a recursive call to Algorithm 2 and returns the cost

of the full series of moves (Line 10).

4.4 Characterizing Data Migrations
In order to find an optimal series of moves, the previous algorithms

need to evaluate individual moves to find the optimal choice at differ-

ent points in time. This section provides the tools to perform such an

evaluation. There are four key questions that must be answered to de-

termine the best move: (1) How to schedule data transfers in a move?

(2) How long does a given reconfiguration take? (3) What is the cost

of the system during reconfiguration? (4) What is the capacity of the

system to execute transactions during reconfiguration?

The answers to the last three questions correspond to finding

expressions for three functions used in Section 4.3, respectively:

T (B,A), C(B,A), and eff-cap. We answer these questions next.

Industry 1: Adaptive Query Processing SIGMOD’18, June 10-15, 2018, Houston, TX, USA

209

Algorithm 3: Calculate minimum cost of system after time t
when the last move is from B to A nodes.

1 Function sub-cost(t, B, A, L, N0, Z, m)
Input: Current time interval t, no. of machines B before last move,

no. of machines A after last move, time-series array of

predicted load L of length T , machines allocated initially

N0, max. no. of machines available to allocate Z, matrix m
of size T ×Z to memoize cost and best series of moves

Output: Min. cost of system after time t, with last move from B to

A nodes

// a move must last at least one time interval

2 if T (B,A) = 0 then T (B,A) ← 1, C(B,A) ← B;

3 start-move ← t − T (B,A);
4 if start-move < 0 then

// this reconfiguration would need to start

// in the past

5 return ∞;

6 for i ← 1 to T (B,A) do
7 load ← L[start-move + i];
8 if load > eff-cap(B, A, i/T (B,A)) then

// penalty for insufficient capacity

// during the move

9 return ∞;

10 return cost(start-move, B, L, N0, Z, m) + C(B,A);

4.4.1 Executing a Move. In order to model moves it is nec-

essary to understand the way they are executed. An important re-

quirement is that at the beginning and end of every move, all servers

always have the same amount of data. So initially B machines each

have 1/B of the data, and at the end, A machines each have 1/A
of the data. Since we consider (approximately) uniform workloads,

spreading out the data evenly is best for load balancing. We enforce

this invariant for each reconfiguration by sending an equal amount

of data from every sender machine to every receiver machine.

Another important aspect in a move is the degree of parallelism

that we can achieve. To minimize performance disruption, we limit

each partition to transfer data with at most one other partition at a

time. This means that the maximum number of parallel data transfers

is limited to whichever is smaller: the number of sender partitions

or the number of receiver partitions. Thus, the maximum number of

parallel data transfers that can occur when scaling from B machines

before to A machines after, with P partitions per machine is:

max‖ =

⎧⎪⎨
⎪⎩

0 if B = A
P∗min(B,A−B) if B < A
P∗min(A,B−A) if B > A

(2)

We are now ready to describe how moves are performed. In the

following exposition, we will consider the specific case of scale

out, since the scale in case is symmetrical. For simplicity and with-

out loss of generality, we will assume one partition per server. To

minimize the time for each move, moves are scheduled such that

the system makes full use of the maximum available parallelism

given by Equation (2). In addition, moves add new servers as late as

possible in order to minimize the cost while the move is ongoing.

actual machines allocated effective capacity

0

3

6

9

12

15

0.0 0.1 0.2
Time (D)

N
u

m
b

er
 o

f
S

er
ve

rs

(a) Case 1: 3 → 5
Machines

0.0 0.1 0.2
Time (D)

(b) Case 2: 3 → 9
Machines

Phase 1 P
ha

se
 2

Phase 3

0.0 0.1 0.2
Time (D)

(c) Case 3: 3 → 14
Machines

Figure 4: Servers allocated and effective capacity during migra-
tion, assuming one partition per server. Time in units of D, the
time to migrate all data with a single thread.

Phase 1, Step 1
1 → 4, 2 → 5, 3 → 6

1 → 5, 2 → 6, 3 → 4

1 → 6, 2 → 4, 3 → 5

Phase 1, Step 2
1 → 7, 2 → 8, 3 → 9

1 → 8, 2 → 9, 3 → 7

1 → 9, 2 → 7, 3 → 8

Phase 2 1 → 10, 2 → 11, 3 → 12

1 → 11, 2 → 12, 3 → 10

Phase 3
1 → 12, 2 → 13, 3 → 14

1 → 13, 2 → 14, 3 → 11

1 → 14, 2 → 10, 3 → 13

Table 1: Schedule of parallel migrations when scaling from 3
machines to 14 machines.

When executing moves, there are three possible strategies that

P-Store uses to maximize parallelism, exemplified in Figure 4. The

first strategy is used when B is greater than or equal to the number

of machines that need to be added (see Figure 4a). In this case, all

new machines are added at once and receive data in parallel, while

sender partitions rotate to send them data.

In the second case, the number of new machines is a perfect

multiple of B, so blocks of B machines will be allocated at once and

simultaneously filled. This allows for maximum parallel movement

while also allowing for just-in-time allocation of machines that are

not needed right away (see Figure 4b).

The third case is the most complex because the move is broken

into three phases (see Figure 4c). The purpose of the three phases

is to keep the sender partitions fully utilized throughout the whole

reconfiguration, thus minimizing the length of the move. Table 1

reports all the sender-receiver pairs in the example of Figure 4c.

During the first phase in Figure 4c, servers are added in blocks

of B = 3 at a time. Each of the original three servers sends data

to every new server, in a round robin manner. During phase two,

three new servers are added, bringing the total up to 12. During this

phase, the sender servers send data to the new receivers, but they are

filled only partly (see Table 1). By the end of phase two, each sender

server has communicated with only two of the three new receiver

servers. Finally, servers 13 and 14 are added during phase three.

Because the previous three receiver servers were not completely

filled in phase two, all the three sender servers can send data in

parallel. This schedule enables the full reconfiguration to complete

in the 11 rounds shown in Table 1, while minimizing overhead on

each partition throughout. Without the three distinct phases, the

reconfiguration shown would require at least 12 rounds.

Industry 1: Adaptive Query Processing SIGMOD’18, June 10-15, 2018, Houston, TX, USA

210

4.4.2 Time for a Move. After detailing how a move is sched-

uled, we are ready to calculate the time T (B,A) that it takes to move

from B to A servers. Recall that D is the time it takes to move the en-

tire database using a single thread, as defined in Section 4.1. We have

discussed previously that moves are scheduled to always make full

use of the maximum parallelism given by Equation (2). Therefore,

the entire database can be moved in time D/max‖. If we consider

the actual fraction of the database that must be moved to scale from

B machines to A machines, we obtain that the reconfiguration time is:

T (B,A) =

⎧⎪⎪⎨
⎪⎪⎩

0 if B = A
D

max‖
∗ (1− B

A) if B < A
D

max‖
∗ (1− A

B) if B > A

(3)

4.4.3 Cost of a Move. As defined in Equation (1), cost de-

pends on the number of machines allocated over time. Therefore, we

define the cost of a reconfiguration as follows:

C(B,A) = T (B,A)∗avg-mach-alloc(B,A) (4)

where T (B,A) is the time for reconfiguration from Equation (3)

and avg-mach-alloc(B,A) is the average number of machines

allocated during migration. The full algorithm to find the latter is

described in Appendix B. The algorithm generalizes the three cases

discussed in Section 4.4.1, and calculates the average machines

allocated based on which case B → A corresponds to.

4.4.4 Effective Capacity of System During Reconfiguration.
Finally, we calculate the effective capacity of the system during a

reconfiguration. The total capacity of N machines in which data is

evenly distributed is defined as follows:

cap(N) = Q∗N (5)

During a reconfiguration, however, data is not evenly distributed.

We refer to the effective capacity of the system during reconfigura-

tion as eff-cap. Assume that a node n keeps a fraction fn of the

total database, where 0 ≤ fn ≤ 1. Since we consider (approximately)

uniform workloads, node n receives a fraction fn of the load, which

is eff-cap ∗ fn when the system is running at full capacity. The

total load on the system cannot be so large that the target capacity Q
of a server is exceeded, so we have that eff-cap∗ fn ≤ Q and:

eff-cap≤ Q/ fn ∀n ∈ {n1 . . .nN} (6)

This implies that the server having the largest fn, i.e., the largest

fraction of the database, determines the maximum capacity of the

system. We can thus define the effective capacity of the system after

a fraction f of the data is moved during the transition from B ma-

chines to A machines as:

eff-cap(B,A, f) =

⎧⎪⎨
⎪⎩

cap(B) if B = A
cap(1/(1

B − f ∗ (1
B − 1

A))) if B < A
cap(1/(1

B + f ∗ (1
A − 1

B))) if B > A

(7)

Let us consider each case individually. The first case is simple: no

data is moving. The second case applies to scaling out, where B
nodes send data to (A−B) new machines. Throughout reconfigura-

tion, capacity is determined by the original B machines, which each

initially have 1/B of the data. After reconfiguration, they will have

1/A of the data, so as fraction f of the data is moved to the new

machines, each of the B machines now has (1/B− f ∗ (1/B−1/A))
of the data. The inverse of this expression corresponds to the number

of machines in an evenly loaded cluster with equivalent capacity to

the current system, and Equation (5) converts that machine count

to capacity. The third case in Equation (7) applies to scaling in and

follows a similar logic to the second case.

To illustrate why it is important to take the effective capacity

into account when planning reconfigurations, Figure 4 shows the

effective capacity at each point during the different migrations pre-

sented at the beginning of this section. For a small change such

as Figure 4a, the effective capacity is close to the actual capacity,

and it may not make a difference for planning purposes. But for

a large reconfiguration such as Figure 4c, the effective capacity is

significantly below the actual number of machines allocated. This

fact must be taken into account when planning reconfigurations to

avoid underprovisioning. Algorithm 3 performs this function in our

Predictive Elasticity Algorithm.

5 LOAD TIME-SERIES PREDICTION
The decision about how and when to reconfigure requires an accu-

rate prediction of the aggregate workload. This section describes the

time-series techniques we use for accurately modeling and predict-

ing the aggregate load on the system. As shown in Figure 1, B2W’s

traffic exhibits a strong diurnal pattern due to the customers’ natural

tendencies to shop during specific times of the day. However, we also

find that there is variability on a day-to-day basis due to many factors,

from seasonality of demand to occasional advertising campaigns.

Capturing these short- and long-term patterns when modeling the

load is critical for making accurate predictions. As previously dis-

cussed, database reconfiguration usually requires several minutes,

so prediction of load changes must be done at that scale. To this

end, we exploit auto-regressive (AR) prediction models, which are

capable of capturing time-dependent correlations in the data. More

precisely, we use Sparse Periodic Auto-Regression (SPAR) [7].

Informally, SPAR strives to infer the dependence of the load on

long-term periodic patterns as well as short-term transient effects.

Therefore, SPAR provides a good fit for the database workloads

that P-Store is designed to serve, since the AR component captures

the observed auto-correlations in the load intensity over time (e.g.

due to diurnal trends), and the sparse-periodic component captures

longer-term seasonal periods (e.g. due to weekly or monthly trends).

We now discuss fitting SPAR to the load data. We measure the

load at time slot t by the number of requests per slot. Here each slot

is 1 minute, so T = 1440 slots per day. In SPAR we model load at

time t + τ based on the periodic signal at that time of the day and

the offset between the load in the recent past and the expected load:

y(t + τ) =
n

∑
k=1

aky(t + τ − kT)+
m

∑
j=1

b jΔy(t − j) (8)

where n is the number of previous periods to consider, m is the

number of recent load measurements to consider, ak and b j are

parameters of the model, 0 ≤ τ < T is a forecasting period (how

long in the future we plan to predict) and

Δy(t − j) = y(t − j)− 1

n

n

∑
k=1

y(t − j− kT)

measures the offset of the load in the recent past to the expected

load at that time of the day. Parameters ak and b j are inferred using

linear least squares regression over the training dataset used to fit

the model.

Industry 1: Adaptive Query Processing SIGMOD’18, June 10-15, 2018, Houston, TX, USA

211

0 500 1000
0

1

2

3
x 10

4

Time (min)

Lo
ad

 (r
eq

ue
st

s/
m

in
)

Actual Load (B2W)
Predicted Load; τ =60min

(a) 60-minute ahead SPAR predictions
during a 24-hour period.

10 20 30 40 50 60

6

8

10

τ : forecast period (min)

M
e
a
n
 R

e
la

tiv
e
 E

rr
o
r

%

B2W Load

(b) Prediction accuracy
vs. forecasting period τ .

Figure 5: Evaluation of SPAR’s predictions for B2W.

SPAR Predictions for B2W: We now analyze the utility of using

SPAR to model and predict the aggregate load in several months’

worth of B2W load traces (Section 7 provides more details about the

data). We used the first 4 weeks of the data to train the SPAR model.

After examining the quality of our predictor under different values

for the number of previous periods n and the number of recent load

measurements m, we find that setting n = 7 and m = 30 is a good fit

for our dataset. This means that we use the previous week for the

periodic prediction, and the offset from the previous 30 minutes to

indicate how different the current load is from the “average” load at

that time of day.

To demonstrate the accuracy of our SPAR predictor, Figure 5a

depicts the actual B2W load and the SPAR predictions for a 24-hour

period (outside of the training set), when using a forecasting window

of τ = 60 minutes. We also report the average prediction accuracy

as a function of forecasting period τ in Figure 5b; the mean relative

error (MRE) measures the deviation of the predictions from the

actual data. We find that the prediction accuracy decays gracefully

with the granularity of the forecasting period τ .

SPAR Predictions for Less Periodic Loads: To better understand

if SPAR’s high-quality predictions for B2W’s periodic load can be

obtained for other Internet workloads with less periodic patterns and

varying degrees of predictability, we examined traces from Wikipedia
for their per-hour page view statistics [14]. We focus on the page

requests made to the two most popular editions, the English-language

and German-language Wikipedias [33].

Similar to our analysis for B2W, we trained SPAR using 4 weeks

of Wikipedia traces from July 2016 (separately for each language

trace), then evaluated SPAR’s predictions using data from August

2016. The results in Figures 6a and 6b show that SPAR is able to

accurately model and predict the hourly Wikipedia load for both

languages. Even for the less predictable German-language load, the

error remains under 10% for predicting up to two hours into the

future, and within only 13% for forecast windows as high as 6 hours.

Discussion: What is a Good Forecasting Window? Note that the

forecast window τ only needs to be large enough for the first move

returned by the dynamic programming algorithm described in Sec-

tion 4 to be correct; by the time the first reconfiguration completes,

the predictions may have changed, so the dynamic program must

be re-run anyway. But in order for the first move to be correct, τ
must be at least 2D/P, the maximum length of time needed for two
reconfigurations with parallel migration. This allows the algorithm

to ensure that the first move will not leave the system in an under-

provisioned state for subsequent moves (e.g., if it plans a “scale

in” move, it knows there will be time to scale back out in advance

of any predicted load spikes). This typically means a value of τ in

the range of tens of minutes. Figures 5 and 6 show that SPAR is

5 10 15 20

2

4

6

8

10
x 10

6

Time (hours)

L
o
a
d
 (

re
q
u
e
st

s/
h
o
u
r)

Actual Load (English−Wikipedia)
Predicted Load; τ = 60min

5 10 15 20
0

0.5

1

1.5

2

2.5
x 10

6

Time (hours)

L
o
a
d
 (

re
q
u
e
st

s/
h
o
u
r)

Actual Load (German−Wikipedia)
Predicted Load; τ = 60min

(a) 60-minute ahead SPAR predictions during a 24-hour period.

1 2 3 4 5 6
0

5

10

15

τ: forecast period (hours)

M
ea

n
R

el
at

iv
e

Er
ro

r %

English−Wikipedia
German−Wikipedia

(b) Prediction accuracy vs. forecasting period τ .

Figure 6: Evaluation of SPAR’s predictions for another work-
load with different periodicity and predictability degrees:
Wikipedia’s per-hour page requests.

sufficiently accurate for such values of τ , with error rates under 10%.

We have explored other time-series models, such as a simple

AR model and an auto-regressive moving-average (ARMA) model.

Overall, we find that AR-based models work well, but that SPAR

usually produces the most accurate predictions under different work-

loads (as it captures different trends in the data). For example, under

τ = 60 minutes, the MRE for predicting the B2W load is 10.4%,

12.2%, and 12.5% under SPAR, ARMA, and AR, respectively.

6 PUTTING IT ALL TOGETHER
P-Store’s techniques are general and can be applied to any parti-

tioned DBMS, but our P-Store implementation is based on the open-

source H-Store system [19]. It uses H-Store’s system calls to obtain

measurements of the aggregate load of the system. Data migrations

are managed by H-Store’s elasticity subsystem, Squall [11].

The P-Store system combines all the previous techniques for

time-series prediction, determination of when to scale in or out,

and how to schedule the migrations. We have created a “Predictive

Controller” which handles online monitoring of the system and calls

to the components that implement each of these techniques. For

convenience, we call these components the Predictor, the Planner

and the Scheduler, respectively.

P-Store has an active learning system. If training data exists, pa-

rameters ak and b j in Equation (8) can be learned offline. Otherwise,

P-Store constantly monitors the system over time and can actively

learn the parameter values. The Predictor component uses Equa-

tion (8) and the fitted parameter values to make online predictions

based on current measurements of H-Store’s aggregate load.

As soon as P-Store starts running, the Predictive Controller be-

gins monitoring the system and measuring the load. When enough

measurements are available, it makes a call to the Predictor, which

returns a time series of future load predictions. The Controller passes

this data to the Planner, which calculates the best series of moves.

Given the best series of moves from the Planner, the Controller

throws away all but the first (similar to the idea of receding horizon

control [24]). It passes this first move along with the current partition

plan to the Scheduler, which generates a new partition plan in which

all source machines send an equal amount of data to all destination

Industry 1: Adaptive Query Processing SIGMOD’18, June 10-15, 2018, Houston, TX, USA

212

machines, as described in Section 4.4.1. This partition plan is then

passed to the external Squall system to perform the migration.

If the Planner calls for a scale-in move, the Controller waits for

three cycles of predictions from the Predictor to confirm the scale-in.

If after three cycles the Planner still calls for a scale-in, then the move

is executed. This heuristic prevents unnecessary reconfigurations

that could cause latency spikes.

After a move is complete, the Controller repeats the cycle of pre-

diction, planning, and migration. If at any time the Planner finds that

there is no feasible solution to manage the load without disruption,

the Scheduler is called to create a partition plan to scale out to the

number of machines needed to handle the predicted spike, and Squall

is called in one of two ways as described at the end of Section 4.3.1:

move data faster and suffer some latency during migration, or move

at the regular rate and wait longer to reach the desired capacity.

7 B2W DIGITAL WORKLOAD
B2W is the largest online retailer in Brazil. This study is based on a

large, rich dataset that includes logs of every transaction on the B2W

shopping cart, checkout and stock inventory databases over a period

of several months. The transaction logs include the timestamp and

the type of each transaction (e.g., GET, PUT, DELETE), as well as

unique identifiers for the shopping carts, checkouts and stock items

that were accessed.

Using B2W’s Workload to Evaluate P-Store: To model B2W’s

workload in H-Store, we have implemented a benchmark driven by

the company’s traces. This benchmark includes nearly all the data-

base operations required to run an online retail store, from adding and

removing items in customers’ shopping carts, to collecting payment

data for checkout. More details about the benchmark are available

in Appendix C. The cart and checkout databases have a predictable

access pattern (recall Figure 1) due to the daily habits of B2W’s cus-

tomers. The stock database is more likely to be accessed by internal

B2W processes, however, causing a spikey, unpredictable access

pattern. There may be predictive models that would be appropriate

for this spikey workload, but we leave such a study for future work.

Our evaluation considers only data and transactions from the cart

and checkout databases. This is consistent with the deployment used

in production at B2W: the stock data is stored in a different database,

on a different cluster of machines from the cart and checkout data.

The business logic involving multiple data sources happens at the

application layer, not at the database layer.

When replaying the original cart and checkout transactions, we

make a couple of modifications to enable us to experimentally

demonstrate our proactive elasticity algorithms with H-Store and

Squall. First, we increase the transaction rate by 10× so we can expe-

rience the workload variability of a full day in just a few hours. This

allows us to demonstrate the performance of P-Store over several

days within a reasonable experimental timeframe. Second, we add a

small delay in each transaction to artificially slow down execution.

We do this because H-Store is much faster than the DBMS used by

B2W and can easily handle even the accelerated workload with a

single server. Slowing down execution allows us to demonstrate the

effectiveness of P-Store by requiring multiple servers.

We train our prediction model using 4-weeks’ worth of historical

B2W data, stored in an analytic database system. The SPAR param-

eters ak and b j from Equation (8) are calculated offline using the

0

300

600

900

T
h

ro
u

g
h

p
u

t
(t

xn
s/

s)

0
100
200
300
400
500

0 500 1000 1500 2000 2500
Time (s)

A
ve

ra
g

e
L

at
en

cy
 (

m
s)

Q = 350 txns/s⌃

Figure 7: Increasing throughput on a single machine. Blue line
indicates maximum throughput Q̂.
training data and can be easily updated online periodically. In our

experiments, we found that updating these parameters once per week

is usually sufficient. The remaining parameters in SPAR are updated

online based on current load information extracted periodically from

H-Store.

8 EVALUATION
To evaluate P-Store we run the B2W benchmark described in the

previous section. All of our experiments are conducted on an H-

Store database with 6 partitions per node deployed on a 10-node

cluster running Ubuntu 12.04 (64-bit Linux 3.2.0), connected by a

10 Gbps switch. Each machine has four 8-core Intel Xeon E7-4830

processors running at 2.13 GHz with 256 GB of DRAM.

8.1 Parameter Discovery
Before running P-Store, we need to understand certain properties of

the B2W workload and its performance on our system. In particular,

we must confirm the workload is close to uniform, and we must

determine the target and maximum throughput per machine Q and Q̂
and time to migrate the whole database D as described in Section 4.1.

In the B2W workload, each shopping cart and checkout key is

randomly generated; so there is minimal skew in transactions ac-

cessing the cart and checkout databases. Furthermore, after hashing

the keys to partitions with MurmurHash 2.0 [17], we found that

the access pattern and data distribution are both relatively uniform

across partitions. In particular, with 30 partitions over a 24-hour

period, the most-accessed partition receives only 10.15% more ac-

cesses than average, and the standard deviation of accesses across all

partitions is 2.62% of the average. The partition with the most data

has only 0.185% more data than average, and the standard deviation

is 0.099% of the average. This level of skew is not even close to the

skew described in [27, 31], in which 40% or more of the transactions

could be routed to a single partition. Therefore, the assumption that

we have a uniform database workload is reasonable.

To discover the values for Q and Q̂, we run a rate-limited version

of the workload with a single server and identify the transaction

rate at which the single server can no longer keep up. As shown in

Figure 7, for the B2W workload running on an H-Store cluster with

6 partitions per server, this happens at 438 transactions per second.

As described in Section 4.1, we set Q̂ to 80% of this maximum, or

350 transactions per second. Q is set to 65% of the maximum, or

285 transactions per second.

To discover D, we run the following set of experiments: With

an underlying workload of Q̂ transactions per second, we start with

the data on a single machine and move half of the data to a second

machine, tracking the latency throughout migration. We perform this

Industry 1: Adaptive Query Processing SIGMOD’18, June 10-15, 2018, Houston, TX, USA

213

Static 1000 kB 2000 kB 4000 kB 6000 kB 8000 kB

400
500
600
700

T
h

ro
u

g
h

p
u

t
(t

xn
s/

s)

0 100 200 0 100 200 0 100 200 0 100 200 0 100 200 0 100 200
0

100
200
300
400
500

Time (s)

L
at

en
cy

 (
m

s)

Percentile Latency 50th 99th

Figure 8: 50th and 99th percentile latencies when reconfiguring
with different chunk sizes compared to a static system. Total
throughput varies so per-machine throughput is fixed at Q̂.

same experiment several times, varying the migration chunk size

each time. We also vary the overall transaction rate to ensure the

rate on the source machine stays fixed at Q̂, even as data is moved.

As shown in Figure 8, the 99th percentile latency when moving

1000 kB chunks is slightly larger than that of a static system with

no reconfiguration, but still within the bounds of most acceptable

latency thresholds. Moving larger chunks causes reconfiguration to

finish faster, but creates a higher risk for latency spikes. In the 1000

kB experiment we moved one half of the entire 1106 MB database

of active shopping carts and checkouts in 2112 seconds. Therefore,

we set D to 4646 seconds (including the 10% buffer), or 77 minutes.

We define the migration rate R as the rate at which data is migrated

in this setting, which is 244 kB per second1. Since P-Store actually

performs parallel migration and a single migration never moves the

entire database, most reconfigurations last between 2 and 7 minutes.

8.2 Comparison of Elasticity Approaches
In this section, we compare the performance and resource utilization

of several different elasticity approaches. Unless otherwise noted,

all experiments are run with the B2W benchmark replaying trans-

actions from a randomly chosen 3-day period, which happened to

fall in July 2016. With a 10× speedup, this corresponds to 7.2 hours

of benchmark time per experiment. For visual clarity, the charts

show throughput and latency averaged over a 10 second window. To

account for load prediction error, we inflate all predictions by 15%.

As a baseline for comparison, we run the benchmark on H-Store

with no elasticity. If the cluster size is sufficient to manage the peak

load comfortably, we would expect few high latency transactions but

many idle servers during periods of low activity. Figure 9a shows this

scenario when running the B2W benchmark on a 10-node cluster.

Average latency is low, with only two small spikes during the first

and third days. Presumably these spikes are caused by transient

workload skew (e.g., one partition receives a large percentage of

the requests over a short period of time). The red line at the top

of the chart shows that with 10 machines allocated and a capacity

per machine of Q̂ = 350 transactions per second, there is plenty of

capacity for the offered load. If we reduce the number of servers

to 4, the number of idle machines drops but the number of high

latency transactions increases (Figure 9b). Companies like B2W

cannot tolerate these latency spikes, and so provision for peak load.

1A data movement rate of 244 kB per second may seem low given a setting of 1000
kB chunks, but the reported chunk size is actually an upper bound; the actual size of
most chunks is much smaller. Squall also spaces the chunks apart by at least 100 ms on
average.

Machines allocated Reconfiguring Static

0

1,000

2,000

3,000

0
2
4
6
8
10

T
h

ro
u

g
h

p
u

t
(t

xn
s/

s)

M
ach

in
es

A
llo

cated

0
50
100
150
200

0 10000 20000
Time (s)

A
ve

ra
g

e
L

at
en

cy
 (

m
s)

(a) Performance of a statically provisioned cluster with 10 machines

0

1,000

2,000

3,000

0
2
4
6
8
10

T
h

ro
u

g
h

p
u

t
(t

xn
s/

s)

M
ach

in
es

A
llo

cated

0
50
100
150
200

0 10000 20000
Time (s)

A
ve

ra
g

e
L

at
en

cy
 (

m
s)

(b) Performance of a statically provisioned cluster with 4 machines

0

1,000

2,000

3,000

0
2
4
6
8
10

T
h

ro
u

g
h

p
u

t
(t

xn
s/

s)

M
ach

in
es

A
llo

cated

577 4570 1560 695 248

0
50
100
150
200

0 10000 20000
Time (s)

A
ve

ra
g

e
L

at
en

cy
 (

m
s) ↑ ↑ ↑ ↑ ↑

(c) Performance of a reactive system

0

1,000

2,000

3,000

0
2
4
6
8
10

T
h

ro
u

g
h

p
u

t
(t

xn
s/

s)

M
ach

in
es

A
llo

cated

0
50
100
150
200

0 10000 20000
Time (s)

A
ve

ra
g

e
L

at
en

cy
 (

m
s)

(d) Performance of P-Store with the SPAR predictive model

Figure 9: Comparison of elasticity approaches.

We also run the benchmark with the reactive elasticity technique

used by E-Store [31]. We choose E-Store over Clay [27] because in

the B2W benchmark each transaction accesses only one partitioning

key. Figure 9c shows the performance of this technique on the B2W

workload. Light green sections of the throughput and latency curves

indicate that a reconfiguration is in progress, while black sections in-

dicate a period of no data movement. The red line shows the number

of machines allocated at each point in time and the corresponding

machine capacity (effective capacity is not shown, but it is close to

the full machine capacity). This technique correctly reacts to the

daily load variations and reconfigures the system as needed to meet

demand. However, it leads to higher latency at the start of each load

increase due to the overhead of reconfiguration at peak capacity.

Industry 1: Adaptive Query Processing SIGMOD’18, June 10-15, 2018, Houston, TX, USA

214

50th Percentile 95th Percentile 99th Percentile

0 200 400 600 0 200 400 600 0 200 400 600
0.00

0.25

0.50

0.75

1.00

Latency (ms)

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

P−Store Reactive
Static Allocation − 10 Servers Static Allocation − 4 Servers

Figure 10: Comparison of elasticity approaches in terms of the
top 1% of 50th, 95th and 99th percentile latencies.

Latency Violations Average
Elasticity 50th 95th 99th Machines
Approach %ile %ile %ile Allocated
Static allocation with 10 servers 0 13 25 10

Static allocation with 4 servers 0 157 249 4

Reactive provisioning 35 220 327 4.02

P-Store 0 37 92 5.05

Table 2: Comparison of elasticity approaches in terms of num-
ber of SLA violations for 50th, 95th and 99th percentile latency,
and average machines allocated.

Finally, we show that P-Store comes closest to solving the prob-

lem outlined in Section 3. Figure 9d shows P-Store running on the

B2W benchmark. We see many fewer latency spikes than the reac-

tive experiment because P-Store reconfigures the system in advance

of load increases and provides more headroom for transient load

variations and skew (notice that the red line indicating machine

capacity is always above the throughput curve).

Figure 10 compares the four different elasticity approaches stud-

ied in terms of CDFs of the top 1% of 50th, 95th and 99th percentile

latencies measured each second during the experiments shown in

Figure 9. Curves that are higher and far to the left are better, because

that indicates that latency is generally low. The reactive approach

clearly performs the worst in all three plots because it reconfigures at

peak capacity, making latency spike. Although static allocation with

four servers outperforms P-Store for 50th percentile latency, it is

much worse for 95th and 99th percentile latencies. Static allocation

with 10 servers performs best in all three plots.

Table 2 reports the number of SLA violations as well as the aver-

age number of machines allocated during the experiments shown in

Figure 9. We define SLA violations as the total number of seconds

during the experiment in which the 50th, 95th, or 99th percentile

latency exceeds 500 ms, since that is the maximum delay that is

unnoticeable by users [1]. Static allocation with 10 machines unsur-

prisingly has the fewest latency violations, but it also has at least 2×
more machines allocated than all the other approaches. Furthermore,

Section 8.3 will show that 10 servers are insufficient to handle load

spikes such as those seen on Black Friday. Static allocation with 4

machines has the smallest number of machines allocated, but it has

many SLA violations for the tail latencies. Reactive provisioning per-

forms even worse, with 13× more 99th percentile latency violations

than static allocation for peak load, because it reconfigures when the

system is at peak capacity. P-Store performs well, using about 50%

of the resources of peak provisioning, while causing about one third

of the latency violations of reactive provisioning. P-Store has more

latency violations than the peak-provisioned system because there is

Rate R Rate R x 8

0
1,000
2,000
3,000

0
2
4
6
8
10

T
h

ro
u

g
h

p
u

t
(t

xn
s/

s)

M
ach

in
es

A
llo

cated

0 2000 4000 60000 2000 4000 6000
0

250
500
750

1,000

Time (s)

A
ve

ra
g

e
L

at
en

cy
 (

m
s)

Machines allocated Reconfiguring Static

Figure 11: Comparison of two different rates of data movement
when P-Store reacts to an unexpected load spike.

less capacity to handle transient workload skew, particularly when

it coincides with data movement. This will be less of a problem

when running at normal speed (as opposed to 10× speed), because

the system will need to reconfigure less frequently. Users can also

configure P-Store to be more conservative in terms of the target

throughput per server Q. Section 8.3 will show how users can vary

Q to prioritize cost or performance.

The predictive algorithms alone are sufficient as long as there

are no unexpected load spikes. When the predictions are incorrect,

however, P-Store must do one of the two options described in Sec-

tion 4: continue scaling out at rate R, or reactively increase the rate

of migration to scale out as fast as possible. Figure 11 compares

these two different approaches in the presence of a large unexpected

spike during a day in September 2016. When scaling at rate R, the

numbers of latency violations for the 50th, 95th, and 99th percentile

are 16, 101, and 143, respectively. When scaling at rate R×8, how-

ever, the numbers are 22, 44, and 51. Although the average latency

at the start of the load spike is higher when scaling at rate R×8, the

total number of seconds with latency violations is lower.

8.3 Simulation of Elasticity Approaches
It is not practical to run the B2W benchmark for longer than a

few days; running the benchmark with just three days of data (as

in Figure 9) requires at least 7.2 hours per experiment. Therefore,

to compare the performance of the different allocation strategies

and different parameter settings over a long period of time, we use

simulation. We make use of the large amount of B2W data available

by simulating running each strategy multiple times with different

parameters over a four-and-a-half month period from August to

December 2016. This period includes Black Friday as well as several

other periods of increased load (e.g., due to periodic promotions

or load testing), allowing for a more comprehensive comparison

between allocation strategies. We use the discovered values of D
and Q̂ from Section 8.1 and we study the effect of varying the value

of Q, which has the effect of increasing or decreasing the “buffer”

between the actual load and the effective capacity provided by each

allocation strategy. This in turn affects the total cost of the allocation,

as well as the likelihood of being caught with insufficient capacity

in case of an unexpected load spike.

Figure 12 shows the performance of each strategy in terms of the

percentage of time with insufficient capacity and overall cost (cal-

culated from Equation (1)). Each point represents a full simulation

with a specific allocation strategy and value of Q. The simulations

with settings corresponding to the four different benchmark runs

from Figure 9 are annotated on the chart. The x-axis is shown with a

Industry 1: Adaptive Query Processing SIGMOD’18, June 10-15, 2018, Houston, TX, USA

215

20

40

0

3

6

9

0.5 1 2 3 4 5
Cost (Normalized, Log Scale)

%
 o

f
T

im
e

w
it

h

 I
n

su
ff

ic
ie

n
t

C
ap

ac
it

y

P−Store Oracle P−Store SPAR Reactive Simple Static

Default
P-Store Settings

Static 10
Machines

Default Reactive
Settings

Each point represents a
simulation over 4.5 months of
B2W data. Position on chart
depends on allocation strategy
and Q.

Static 4 Machines

Figure 12: Performance of different allocation strategies and
values of Q simulated over 4.5 months of B2W’s load.

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100
Time (hours)

E
ff

ec
ti

ve
 C

ap
ac

it
y

(N
o

rm
al

iz
ed

 t
xn

s/
se

c)

Actual Load P−Store SPAR Simple Static

2800 2825 2850 2875 2900

Black Friday

Figure 13: Actual load on B2W’s DB and effective capacity of
three allocation strategies simulated over two 4-day periods.

logarithmic scale and normalized to the cost of the P-Store simula-

tion using default parameters (i.e., predictions are inflated by 15%,

Q is set to 65% of the maximum throughput, etc.). Varying Q has

the effect of prioritizing either sufficient capacity or lower cost, thus

creating a “capacity-cost” curve for each allocation strategy.2

Figure 12 compares P-Store with SPAR to four other allocation

strategies. “P-Store Oracle” shows the performance of P-Store given

a perfect prediction. The percentage of time with insufficient capacity

is not zero because the predictions are at the granularity of five

minutes, and instantaneous load may have spikes. Of course “P-

Store Oracle” is not possible in practice, but it shows the upper

bound of P-Store’s performance. “P-Store SPAR” is not far behind,

and Figure 12 demonstrates that P-Store’s default parameters achieve

a good tradeoff between cost and capacity. The purple line shows a

reactive allocation strategy, similar to the strategy used in Figure 9c.

It is possible to limit capacity violations with a reactive approach by

increasing the “buffer” of allocated machines, but this results in a

higher-cost solution. The “Simple” strategy increases machines in

the morning and decreases them at night. It seems like it could work

(see the green dotted line in Figure 13, left), but it breaks down as

soon as there is any deviation from the pattern (see Figure 13, right).

Increasing the number of machines allocated each day reduces the

time with insufficient capacity, but vastly increases the cost. The

worst option is the “Static” approach (see Figures 9a, 9b and 13).

Similar to the “Simple” model, it is inflexible and not resilient

to large load spikes. In contrast, P-Store uses both predictive and

reactive techniques to effectively handle the load surge on Black

Friday (see Figure 13, right).

2Varying P-Store’s prediction inflation parameter has the same effect as varying Q since
both parameters affect the “buffer” between actual load and effective capacity. Both
parameters affect the position along P-Store’s capacity-cost curve shown in Figure 12.

9 RELATED WORK
This work follows on several previous papers on database elasticity.

We have discussed reactive approaches such as Accordion [26], E-

Store [31], and Clay [27] in Section 2. TIRAMOLA is an elastic

system for NoSQL databases which models resize decisions as a

Markov Decision Process [32]. Cumulus [13] is another project that,

similar to Clay, attempts to minimize distributed transactions through

adaptive repartitioning. It currently does not support elasticity.

Many recent papers have modeled cyclic workloads and load

spikes for management of data centers, Infrastructure-as-a-Service

cloud systems, and web applications [15, 16, 23, 28, 29, 34]. Many

of the systems described are elastic and include a control-loop for

proactively provisioning resources in advance of load increases. The

model for most of these systems is that servers and other cloud

resources have some amount of fixed initialization cost, but once

initialized they are available to serve requests at full capacity. We

study a more complex model of proactive provisioning specific to

shared nothing databases, in which the effective capacity of newly

allocated servers is limited by the speed of data re-distribution.

There has been some recent work on modeling workloads for

elastically scaling databases [10], but it has focused on long-term

growth for scientific databases rather than cyclic OLTP workloads.

Holze et al. model cyclic database workloads and predict workload

changes [18], but they do not use these models to proactively re-

configure the database. PerfEnforce [25] predicts the amount of

computing resources needed to meet SLAs for a particular OLAP

query workload. It does not take into account the time to scale

out to the new configuration, nor the impact on query performance

during scaling. ShuttleDB implements predictive elasticity for a

multi-tenant Database-as-a-Service system, but unlike our system it

only moves entire databases or VMs [4]. To our knowledge, there

is no other system that solves the problem that P-Store addresses:

proactive scaling for a distributed, highly-available OLTP database.

In this paper, we use Squall [11] for database migration. There

are other approaches to live database migration [3, 8, 9, 12], all

focusing on reducing the overhead of migration while maintaining

ACID guarantees. We show that with careful performance tuning, it

is possible to virtually eliminate overhead for certain workloads.

10 CONCLUSION
This paper presented P-Store, a novel database system that uses pre-

dictive modeling to elastically reconfigure the database before load

spikes occur. We defined the problem that P-Store seeks to solve:

how to reduce costs by deciding when and how to reconfigure the

database. To explain how P-Store solves this problem, we described

a novel dynamic programming algorithm for scheduling reconfigura-

tions. We presented a time-series model that can accurately predict

the load for different applications. Finally, we tested the end-to-end

system by running a real online retail workload in H-Store and using

our predictive models to decide when and how to reconfigure, thus

demonstrating the cost savings that can be achieved with P-Store.

Overall, P-Store improves on existing work on database elasticity

by scaling proactively rather than reactively, but it does not manage

skew as E-Store and Clay do. Future work should investigate com-

bining these ideas to build a system which uses predictive modeling

for proactive reconfiguration, but also manages skew.

Industry 1: Adaptive Query Processing SIGMOD’18, June 10-15, 2018, Houston, TX, USA

216

REFERENCES
[1] Ioannis Arapakis, Xiao Bai, and B Barla Cambazoglu. 2014. Impact of Response

Latency on User Behavior in Web Search. In Proceedings of the 37th international
ACM SIGIR conference on Research & development in information retrieval.
103–112.

[2] B2W Digital 2017. B2W Digital. https://www.b2wdigital.com. (2017).
[3] Sean Barker, Yun Chi, Hyun Jin Moon, Hakan Hacigümüş, and Prashant Shenoy.

2012. Cut Me Some Slack: Latency-Aware Live Migration for Databases. In Pro-
ceedings of the 15th international conference on extending database technology.
432–443.

[4] Sean Kenneth Barker, Yun Chi, Hakan Hacigümüs, Prashant Shenoy, and Em-
manuel Cecchet. 2014. ShuttleDB: Database-Aware Elasticity in the Cloud. In
IEEE International Conference on Autonomic Computing. 33–43.

[5] Deborah Barnes and Vijay Mookerjee. 2009. Customer delay in e-Commerce
sites: Design and strategic implications. Business Computing 3 (2009), 117.

[6] Jake Brutlag. 2009. Speed Matters for Google Web Search. https://services.google.
com/fh/files/blogs/google delayexp.pdf. (2009). [Online; accessed: 16-Mar-2017].

[7] Gong Chen, Wenbo He, Jie Liu, Suman Nath, Leonidas Rigas, Lin Xiao, and
Feng Zhao. 2008. Energy-aware Server Provisioning and Load Dispatching
for Connection-intensive Internet Services. In Proceedings of the 5th USENIX
Symposium on Networked Systems Design and Implementation. 337–350.

[8] Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. 2013. ElasTraS: An
Elastic, Scalable, and Self-Managing Transactional Database for the Cloud. ACM
Transactions on Database Systems 38, 1 (2013), 5:1–5:45.

[9] Sudipto Das, Shoji Nishimura, Divyakant Agrawal, and Amr El Abbadi. 2011.
Albatross: Lightweight Elasticity in Shared Storage Databases for the Cloud Using
Live Data Migration. Proceedings of the VLDB Endowment 4, 8 (2011), 494–505.

[10] Jennie Duggan and Michael Stonebraker. 2014. Incremental Elasticity for Array
Databases. In Proceedings of the 2014 ACM SIGMOD International Conference
on Management of Data. 409–420.

[11] Aaron J. Elmore, Vaibhav Arora, Rebecca Taft, Andrew Pavlo, Divyakant Agrawal,
and Amr El Abbadi. 2015. Squall: Fine-Grained Live Reconfiguration for Par-
titioned Main Memory Databases. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data. 299–313.

[12] Aaron J Elmore, Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. 2011.
Zephyr: Live Migration in Shared Nothing Databases for Elastic Cloud Plat-
forms. In Proceedings of the 2011 ACM SIGMOD International Conference on
Management of Data. 301–312.

[13] Ilir Fetai, Damian Murezzan, and Heiko Schuldt. 2015. Workload-Driven Adaptive
Data Partitioning and Distribution - The Cumulus Approach. In IEEE International
Conference on Big Data. 1688–1697.

[14] Wikimedia Foundation. 2017. Wikipedia page view statistics. https://dumps.
wikimedia.org/other/pagecounts-raw. (2017).

[15] D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper. 2007. Workload Analysis and
Demand Prediction of Enterprise Data Center Applications. In Proceedings of the
IEEE 10th International Symposium on Workload Characterization. 171–180.

[16] Zhenhuan Gong, Xiaohui Gu, and John Wilkes. 2010. Press: Predictive Elastic
Resource Scaling for Cloud Systems. In Proceedings of the IEEE International
Conference on Network and Service Management. 9–16.

[17] V Holub. 2010. Java implementation of MurmurHash. https://github.com/tnm/
murmurhash-java. (2010). [Online; accessed: 29-Mar-2017].

[18] Marc Holze, Ali Haschimi, and Norbert Ritter. 2010. Towards Workload-Aware
Self-Management: Predicting Significant Workload Shifts. In Proceedings of the
IEEE 26th International Conference on Data Engineering Workshops. 111–116.

[19] Robert Kallman, Hideaki Kimura, Jonathan Natkins, Andrew Pavlo, Alexander
Rasin, Stanley Zdonik, Evan P. C. Jones, Samuel Madden, Michael Stonebraker,
Yang Zhang, John Hugg, and Daniel J. Abadi. 2008. H-Store: A High-performance,
Distributed Main Memory Transaction Processing System. Proceedings of the
VLDB Endowment 1, 2 (2008), 1496–1499.

[20] Kissmetrics. 2017. How Loading Time Affects Your Bottom Line. https://blog.
kissmetrics.com/loading-time/?wide=1. (2017). [Online; accessed: 28-Feb-2017].

[21] Greg Linden. 2006. Make Data Useful. http://www.gduchamp.com/media/
StanfordDataMining.2006-11-28.pdf. (2006). [Online; accessed: 28-Feb-2017].

[22] Greg Linden. 2006. Marissa Mayer at Web 2.0. http://glinden.blogspot.com/2006/
11/marissa-mayer-at-web-20.html. (2006). [Online; accessed: 16-Mar-2017].

[23] Zhenhua Liu, Yuan Chen, Cullen Bash, Adam Wierman, Daniel Gmach, Zhikui
Wang, Manish Marwah, and Chris Hyser. 2012. Renewable and Cooling Aware
Workload Management for Sustainable Data Centers. SIGMETRICS Perform.
Eval. Rev. 40, 1 (June 2012), 175–186.

[24] David Q Mayne and Hannah Michalska. 1990. Receding Horizon Control of
Nonlinear Systems. IEEE Trans. Automat. Control 35, 7 (1990), 814–824.

[25] Jennifer Ortiz, Brendan Lee, and Magdalena Balazinska. 2016. PerfEnforce
Demonstration: Data Analytics with Performance Guarantees. In Proceedings of
the 2016 International Conference on Management of Data. 2141–2144.

[26] Marco Serafini, Essam Mansour, Ashraf Aboulnaga, Kenneth Salem, Taha Rafiq,
and Umar Farooq Minhas. 2014. Accordion: Elastic Scalability for Database Sys-
tems Supporting Distributed Transactions. Proceedings of the VLDB Endowment
7, 12 (2014), 1035–1046.

[27] Marco Serafini, Rebecca Taft, Aaron J Elmore, Andrew Pavlo, Ashraf Aboulnaga,
and Michael Stonebraker. 2016. Clay: Fine-grained Adaptive Partitioning for
General Database Schemas. Proceedings of the VLDB Endowment 10, 4 (2016),
445–456.

[28] Zhiming Shen, Sethuraman Subbiah, Xiaohui Gu, and John Wilkes. 2011. Cloud-
Scale: Elastic Resource Scaling for Multi-tenant Cloud Systems. In Proceedings
of the 2nd ACM Symposium on Cloud Computing. 5:1–5:14.

[29] Matthew Sladescu. 2015. Proactive Event Aware Cloud Elasticity Control. Ph.D.
Dissertation. University of Sydney.

[30] Rebecca Taft. 2017. B2W Benchmark in H-Store. https://github.com/rytaft/
h-store/tree/b2w/src/benchmarks/edu/mit/benchmark/b2w. (2017).

[31] Rebecca Taft, Essam Mansour, Marco Serafini, Jennie Duggan, Aaron J Elmore,
Ashraf Aboulnaga, Andrew Pavlo, and Michael Stonebraker. 2014. E-Store:
Fine-grained elastic partitioning for distributed transaction processing systems.
Proceedings of the VLDB Endowment 8, 3 (2014), 245–256.

[32] D. Tsoumakos, I. Konstantinou, C. Boumpouka, S. Sioutas, and N. Koziris.
2013. Automated, Elastic Resource Provisioning for NoSQL Clusters Using
TIRAMOLA. In Proceedings of the 13th IEEE/ACM International Symposium on
Cluster, Cloud, and Grid Computing. 34–41.

[33] Guido Urdaneta, Guillaume Pierre, and Maarten Van Steen. 2009. Wikipedia
Workload Analysis for Decentralized Hosting. Computer Networks 53, 11 (2009),
1830–1845.

[34] Michail Vlachos, Christopher Meek, Zografoula Vagena, and Dimitrios Gunop-
ulos. 2004. Identifying Similarities, Periodicities and Bursts for Online Search
Queries. In Proceedings of the 2004 ACM SIGMOD International Conference on
Management of Data. 131–142.

Industry 1: Adaptive Query Processing SIGMOD’18, June 10-15, 2018, Houston, TX, USA

217

Symbol Definition
C Cost of a DBMS cluster over T time intervals

T Number of time intervals considered in

calculation of C
st Number of servers in the database cluster

at time t
Q The target average throughput of a single

database server

Q̂ The maximum throughput of a single database

server

D The time needed to move all data in the

database once with a single thread

R The rate at which data must be migrated

to move the entire database in time D
B Number of servers before a reconfiguration

A Number of servers after a reconfiguration

move A reconfiguration from A to B servers

L Time-series array of predicted load of

of length T
N0 Number of nodes allocated at the start of

Algorithm 1

Z The maximum number of machines needed to

serve the predicted load in L
m A matrix to memoize the cost and best series

of moves calculated by Algorithm 2

M The sequence of moves returned by

Algorithm 1

cap(N) Returns the maximum capacity of N servers

T (B,A) Returns the time for a reconfiguration

from B to A servers

C(B,A) Returns the cost of a reconfiguration

from B to A servers

eff-cap(B,A, f) Returns the effective capacity of the DBMS

after fraction f of the data has been moved

when reconfiguring from B to A servers

P The number of partitions per server

max‖ The maximum number of parallel

migrations during a reconfiguration

avg-mach-alloc(B,A) Returns the average number of machines

allocated when reconfiguring

from B to A servers

s Minimum of B and A
l Maximum of B and A
Δ The difference between s and l
r The remainder of dividing Δ by s
fn The fraction of the database hosted by node n
f The fraction moved so far of the total

data moving during a reconfiguration

τ The SPAR forecasting window

ak SPAR coefficient for periodic load

b j SPAR coefficient for recent load

y(t + τ) SPAR forecasted load at time t + τ
n The number of previous periods considered

by SPAR

m The number of recent load measurements

considered by SPAR

Table 3: Symbols and definitions used throughout the paper.

A SYMBOLS USED THROUGHOUT PAPER
For ease of reference, we provide in Table 3 a list of the symbols

used throughout the paper in the order they appear.

B AVERAGE MACHINES ALLOCATED
DURING RECONFIGURATION

As described in Section 4.4.3, the expected cost of a re-

configuration from B to A is equal to the time for recon-

figuration, T (B,A), multiplied by the average number of ma-

chines allocated, avg-mach-alloc(B,A). The full algorithm for

avg-mach-alloc(B,A) is presented in Algorithm 4.

Algorithm 4: Calculate the average number of machines that

must be allocated during the move from B to A machines with

parallel migration

1 Function avg-mach-alloc(B, A)
Input: Machines before move B, machines after move A
Output: Average number of machines allocated during the move

// Machine allocation symmetric for scale-in and

// scale-out. Important distinction is not

// before/after but larger/smaller.

2 l ← max(B,A) ; // larger cluster

3 s ← min(B,A) ; // smaller cluster

4 Δ ← l − s ; // delta

5 r ← Δ%s ; // remainder

// ==

// Case 1: All machines added or removed at once

// ==

6 if s ≥ Δ then return l;

// ==

// Case 2: Δ is multiple of smaller cluster

// ==

7 if r = 0 then return (2s+ l)/2;

// ==

// Case 3: Machines added or removed in 3 phases

// ==

// Phase 1: N1 sets of s machines added and

// filled completely

8 N1 ← Δ/s�−1 ; // number of steps in phase1

9 T1 ← s/Δ ; // time per step in phase1

10 M1 ← (s+ l− r)/2 ; // average machines in phase1

11 phase1 ← N1 ∗T1 ∗M1;

// Phase 2: s machines added and filled r/s
// fraction of the way

12 T2 ← r /Δ ; // time for phase2

13 M2 ← l− r ; // machines in phase2

14 phase2 ← T2 ∗M2;

// Phase 3: r machines added and remaining

// machines filled completely

15 T3 ← s/Δ ; // time for phase3

16 M3 ← l ; // machines in phase3

17 phase3 ← T3 ∗M3;

18 return phase1 + phase2 + phase3

Industry 1: Adaptive Query Processing SIGMOD’18, June 10-15, 2018, Houston, TX, USA

218

Algorithm 4 takes into consideration that machine allocation

is symmetric for scale-in and scale-out. The important distinction

between the starting and ending cluster sizes, therefore, is not be-

fore/after but larger/smaller. And the delta between the larger and

smaller clusters is equal to the number of machines receiving data

from the smaller cluster when scaling out, or the number of machines

sending data to the smaller cluster when scaling in. These values are

assigned to l, s and Δ in Lines 2 to 4 of Algorithm 4. Line 5 assigns

to r the remainder of dividing Δ by s, which will be important later

in the algorithm.

Given these definitions, the algorithm considers the three cases

discussed in Section 4.4.1. In the first case, the size of the smaller

cluster is greater than or equal to Δ, which means that all new

machines must be allocated (or de-allocated) at once in order to

allow for maximum parallel movement (Line 6). In the second case,

Δ is a perfect multiple of the smaller cluster, so blocks of s machines

will be allocated (or deallocated) at once and simultaneously filled

(or emptied). Thus, the average number of machines allocated is

(2s+ l)/2 (Line 7). In the third case we have three phases, and the

calculation of the average number of machines is shown in Lines 8

to 18 of Algorithm 4.

C B2W BENCHMARK
This appendix provides more detail about the B2W Benchmark intro-

duced in Section 7. The transaction logs from B2W include the times-

tamp and the type of each transaction (e.g., GET, PUT, DELETE),

as well as unique identifiers for the shopping carts, checkouts and

stock items that were accessed or modified. Since there is some

important information not available in the logs (e.g., the contents of

each shopping cart), we also use a dump of all of the B2W shopping

carts, checkouts, and stock data from the last year. The data has been

anonymized to eliminate any sensitive customer information, but

otherwise it is identical to the data in production. Joining the unique

identifiers from the log data with the keys in the database dump thus

allows us to infer almost everything about each transaction, meaning

we can effectively replay the transactions starting from any point

in the logs. This allows us to run H-Store with the same workload

running in B2W’s production shopping cart, checkout and stock

databases.

A simplified database is shown in Figure 14, and a list of the

transactions is shown in Table 4. When a customer tries to add an

item to their cart through the website, GetStockQuantity is called

to see if the item is available, and if so, AddLineToCart is called to

update the shopping cart. At checkout time, the system attempts to

reserve each item in the cart, calling ReserveStock on each item. If

a given item is no longer available, it is removed from the shopping

cart and the customer is notified. The customer has a chance to

review the final shopping cart before they agree to the purchase.

Although the data used in this work is proprietary to B2W, the H-

Store benchmark containing the full database schema and transaction

logic is not. The benchmark is open-source and available on GitHub

for the community to use [30].

Figure 14: Simplified database for the B2W H-Store benchmark

Transaction Description
AddLineToCart Add a new item to the shopping cart,

create the cart if it doesn’t exist yet

DeleteLineFromCart Remove an item from the cart

GetCart Retrieve items currently in the cart

DeleteCart Delete the shopping cart

GetStock Retrieve the stock inventory information

GetStockQuantity Determine availability of an item

ReserveStock Update the stock inventory to mark

an item as reserved

PurchaseStock Update the stock inventory to mark

an item as purchased

CancelStockReservation Cancel the stock reservation to make

an item available again

CreateStockTransaction Create a stock transaction indicating

that an item in the cart has been reserved

ReserveCart Mark the items in the shopping cart as reserved

GetStockTransaction Retrieve the stock transaction

UpdateStockTransaction Change the status of a stock transaction

to mark it as purchased or cancelled

CreateCheckout Start the checkout process

CreateCheckoutPayment Add payment information to the checkout

AddLineToCheckout Add a new item to the checkout object

DeleteLineFromCheckout Remove an item from the checkout object

GetCheckout Retrieve the checkout object

DeleteCheckout Delete the checkout object

Table 4: Operations from the B2W H-Store benchmark

Industry 1: Adaptive Query Processing SIGMOD’18, June 10-15, 2018, Houston, TX, USA

219

